全國

熱門城市 | 全國 北京 上海 廣東

華北地區(qū) | 北京 天津 河北 山西 內(nèi)蒙古

東北地區(qū) | 遼寧 吉林 黑龍江

華東地區(qū) | 上海 江蘇 浙江 安徽 福建 江西 山東

華中地區(qū) | 河南 湖北 湖南

西南地區(qū) | 重慶 四川 貴州 云南 西藏

西北地區(qū) | 陜西 甘肅 青海 寧夏 新疆

華南地區(qū) | 廣東 廣西 海南

  • 微 信
    高考

    關(guān)注高考網(wǎng)公眾號

    (www_gaokao_com)
    了解更多高考資訊

您現(xiàn)在的位置:首頁 > 高考資源網(wǎng) > 高中教案 > 高二數(shù)學(xué)教案 > 高二數(shù)學(xué)教案:《算術(shù)平均數(shù)與幾何平均數(shù)》教學(xué)設(shè)計(一)

電子課本

高考真題

高考模擬題

高中試卷

高中課件

高中教案

高二數(shù)學(xué)教案:《算術(shù)平均數(shù)與幾何平均數(shù)》教學(xué)設(shè)計(一)

來源:網(wǎng)絡(luò)整理 2018-11-21 18:31:51

高二數(shù)學(xué)教案:《算術(shù)平均數(shù)與幾何平均數(shù)》教學(xué)設(shè)計(一)

  教學(xué)目標(biāo)

 。1)掌握“兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)”這一重要定理;

 。2)能運用定理證明不等式及求一些函數(shù)的最值;

 。3)能夠解決一些簡單的實際問題;

 。4)通過對不等式的結(jié)構(gòu)的分析及特征的把握掌握重要不等式的聯(lián)系;

 。5)通過對重要不等式的證明和等號成立的條件的分析,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)科學(xué)的認(rèn)識習(xí)慣,進(jìn)一步滲透變量和常量的哲學(xué)觀;

  教學(xué)建議

  1.教材分析

  (1)知識結(jié)構(gòu)

 。2)重點、難點分析

  本節(jié)課的重點內(nèi)容是掌握“兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)”;掌握兩個正數(shù)的和為定值時積有最大值,積為定值時和有最小值的結(jié)論,教學(xué)難點是正確理解和使用平均值定理求某些函數(shù)的最值.為突破重難點,教師單方面強(qiáng)調(diào)是遠(yuǎn)遠(yuǎn)不夠的,只有讓學(xué)生通過自己的思考、嘗試,注意到平均值定理中等號成立的條件,發(fā)現(xiàn)使用定理求最值的三個條件“一正,二定,三相等”缺一不可,才能大大加深學(xué)生對正確使用定理的理解,教學(xué)中要注意培養(yǎng)學(xué)生分析歸納問題的能力,幫助學(xué)生形成知識體系,全面深刻地掌握平均值定理求最值和解決實際問題的方法.

 、宥ɡ斫虒W(xué)的注意事項

  它們本身也是根據(jù)不等式的意義、性質(zhì)或用比較法(將在下一小節(jié)學(xué)習(xí))證出的。因此,凡是用它們可以獲證的不等式,一般也可以直接根據(jù)不等式的意義、性質(zhì)或用比較法證明。

收藏

高考院校庫(挑大學(xué)·選專業(yè),一步到位。

高校分?jǐn)?shù)線

專業(yè)分?jǐn)?shù)線

日期查詢

京ICP備10033062號-2 北京市公安局海淀分局備案編號:1101081950

違法和不良信息舉報電話:010-56762110     舉報郵箱:wzjubao@tal.com

高考網(wǎng)版權(quán)所有 Copyright © 2005-2022 m.0v2773b.cn . All Rights Reserved

知識商店