全國

熱門城市 | 全國 北京 上海 廣東

華北地區(qū) | 北京 天津 河北 山西 內蒙古

東北地區(qū) | 遼寧 吉林 黑龍江

華東地區(qū) | 上海 江蘇 浙江 安徽 福建 江西 山東

華中地區(qū) | 河南 湖北 湖南

西南地區(qū) | 重慶 四川 貴州 云南 西藏

西北地區(qū) | 陜西 甘肅 青海 寧夏 新疆

華南地區(qū) | 廣東 廣西 海南

  • 微 信
    高考

    關注高考網公眾號

    (www_gaokao_com)
    了解更多高考資訊

您現在的位置:首頁 > 高考資源網 > 高中教案 > 高一數學教案 > 高一數學教案:《對數函數》教學設計

電子課本

高考真題

高考模擬題

高中試卷

高中課件

高中教案

高一數學教案:《對數函數》教學設計

來源:網絡整理 2018-11-21 19:48:35

高一數學教案:《對數函數》教學設計

  教學目標

  1.掌握對數函數的概念,圖象和性質,且在掌握性質的基礎上能進行初步的應用.

  (1) 能在指數函數及反函數的概念的基礎上理解對數函數的定義,了解對底數的要求,及對定義域的要求,能利用互為反函數的兩個函數圖象間的關系正確描繪對數函數的圖象.

  (2) 能把握指數函數與對數函數的實質去研究認識對數函數的性質,初步學會用對數函數的性質解決簡單的問題.

  2.通過對數函數概念的學習,樹立相互聯(lián)系相互轉化的觀點,通過對數函數圖象和性質的學習,滲透數形結合,分類討論等思想,注重培養(yǎng)學生的觀察,分析,歸納等邏輯思維能力.

  3.通過指數函數與對數函數在圖象與性質上的對比,對學生進行對稱美,簡潔美等審美教育,調動學生學習數學的積極性.

  教學建議

  教材分析

  (1) 對數函數又是函數中一類重要的基本初等函數,它是在學生已經學過對數與常用對數,反函數以及指數函數的基礎上引入的.故是對上述知識的應用,也是對函數這一重要數學思想的進一步認識與理解.對數函數的概念,圖象與性質的學習使學生的知識體系更加完整,系統(tǒng),同時又是對數和函數知識的拓展與延伸.它是解決有關自然科學領域中實際問題的重要工具,是學生今后學習對數方程,對數不等式的基礎.

  (2) 本節(jié)的教學重點是理解對數函數的定義,掌握對數函數的圖象性質.難點是利用指數函數的圖象和性質得到對數函數的圖象和性質.由于對數函數的概念是一個抽象的形式,學生不易理解,而且又是建立在指數與對數關系和反函數概念的基礎上,故應成為教學的重點.

  (3) 本節(jié)課的主線是對數函數是指數函數的反函數,所有的問題都應圍繞著這條主線展開.而通過互為反函數的兩個函數的關系由已知函數研究未知函數的性質,這種方法是第一次使用,學生不適應,把握不住關鍵,所以應是本節(jié)課的難點.

  教法建議

  (1) 對數函數在引入時,就應從學生熟悉的指數問題出發(fā),通過對指數函數的認識逐步轉化為對對數函數的認識,而且畫對數函數圖象時,既要考慮到對底數 的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質.

  (2) 在本節(jié)課中結合對數函數教學的特點,一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地反函數這條主線引導學生思考的方向.這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,,從而提高學習興趣.

  教學設計示例

  對數函數

  教學目標

  1. 在指數函數及反函數概念的基礎上,使學生掌握對數函數的概念,能正確描繪對數函數的圖像,掌握對數函數的性質,并初步應用性質解決簡單問題.

  2. 通過對數函數的學習,樹立相互聯(lián)系,相互轉化的觀點,滲透數形結合,分類討論的思想.

  3. 通過對數函數有關性質的研究,培養(yǎng)學生觀察,分析,歸納的思維能力,調動學生學習的積極性.

  教學重點,難點

  重點是理解對數函數的定義,掌握圖像和性質.

  難點是由對數函數與指數函數互為反函數的關系,利用指數函數圖像和性質得到對數函數的圖像和性質.

收藏

高考院校庫(挑大學·選專業(yè),一步到位!)

高校分數線

專業(yè)分數線

京ICP備10033062號-2 北京市公安局海淀分局備案編號:1101081950

違法和不良信息舉報電話:010-56762110     舉報郵箱:wzjubao@tal.com

高考網版權所有 Copyright © 2005-2022 m.0v2773b.cn . All Rights Reserved

知識商店