2025年高考復習數學知識點特殊三角函數
來源:網絡整理 2024-11-13 14:43:00
特殊三角函數性質
特殊三角函數是性質特殊的一類三角函數的總稱,主要包括正弦三角函數、余弦三角函數、正切三角函數、余切三角函數、正割三角函數、和余割三角函數。
特殊三角函數值:特殊三角函數值一般指在0,30°,45°,60°,90°,180°角下的正余弦值。這些角度的三角函數值是經常用到的。并且利用兩角和與差的三角函數公式,可以求出一些其他角度的三角函數值。
特殊三角函數值公式有哪些
α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞
α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2
α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)
a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2
α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2
α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3
α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)
α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2
α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1
α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞
α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1
α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞
特殊三角函數相關公式
sin(a+b)=sin a cos b +cos a sin b
cos(a+b)=cos a cos b -sin a sin b
sin(a-b)=sin a cos b -cos a sin b
cos(a-b)=cos a cos b +sin a sin b
tan(a+b)=(tan a +tan b )/(1-tan a tan b )
tan(a-b)=(tan a -tan b )/(1+tan a tan b )
相關推薦:
最新高考資訊、高考政策、考前準備、志愿填報、錄取分數線等
高考時間線的全部重要節(jié)點
盡在"高考網"微信公眾號
相關推薦
高考院校庫(挑大學·選專業(yè),一步到位。
高校分數線
專業(yè)分數線
- 日期查詢