高考數(shù)學(xué)知識點(diǎn):二元一次不等式(組)與簡單的線性規(guī)劃問題
來源:網(wǎng)絡(luò)資源 2019-05-07 16:39:27
1. 滿足二元一次不等式(組)的x和y的取值構(gòu)成有序數(shù)對(x,y),稱為二元一次不等式(組)的一個(gè)解,所有這樣的有序數(shù)對(x,y)構(gòu)成的集合稱為二元一次不等式(組)的解集。
2. 二元一次不等式(組)的每一個(gè)解(x,y)作為點(diǎn)的坐標(biāo)對應(yīng)平面上的一個(gè)點(diǎn),二元一次不等式(組)的解集對應(yīng)平面直角坐標(biāo)系中的一個(gè)半平面(平面區(qū)域)。
3. 直線l:Ax+By+C=0(A、B不全為零)把坐標(biāo)平面劃分成兩部分,其中一部分(半個(gè)平面)對應(yīng)二元一次不等式Ax+By+C>0(或≥0),另一部分對應(yīng)二元一次不等式Ax+By+C<0(或≤0)。
4. 已知平面區(qū)域,用不等式(組)表示它,其方法是:在所有直線外任取一點(diǎn)(如本題的原點(diǎn)(0,0)),將其坐標(biāo)代入Ax+By+C,判斷正負(fù)就可以確定相應(yīng)不等式。
5. 一個(gè)二元一次不等式表示的平面區(qū)域是相應(yīng)直線劃分開的半個(gè)平面,一般用特殊點(diǎn)代入二元一次不等式檢驗(yàn)就可以判定,當(dāng)直線不過原點(diǎn)時(shí)常選原點(diǎn)檢驗(yàn),當(dāng)直線過原點(diǎn)時(shí),常選(1,0)或(0,1)代入檢驗(yàn),二元一次不等式組表示的平面區(qū)域是它的各個(gè)不等式所表示的平面區(qū)域的公共部分,注意邊界是實(shí)線還是虛線的含義。“線定界,點(diǎn)定域”。
6. 滿足二元一次不等式(組)的整數(shù)x和y的取值構(gòu)成的有序數(shù)對(x,y),稱為這個(gè)二元一次不等式(組)的一個(gè)解。所有整數(shù)解對應(yīng)的點(diǎn)稱為整點(diǎn)(也叫格點(diǎn)),它們都在這個(gè)二元一次不等式(組)表示的平面區(qū)域內(nèi)。
7. 畫二元一次不等式Ax+By+C≥0所表示的平面區(qū)域時(shí),應(yīng)把邊界畫成實(shí)線,畫二元一次不等式Ax+By+C>0所表示的平面區(qū)域時(shí),應(yīng)把邊界畫成虛線。
8. 若點(diǎn)P(x0,y0)與點(diǎn)P1(x1,y1)在直線l:Ax+By+C=0的同側(cè),則Ax0+By0+C與Ax1+Byl+C符號相同;若點(diǎn)P(x0,y0)與點(diǎn)P1(x1,y1)在直線l:Ax+By+C=0的兩側(cè),則Ax0+By0+C與Ax1+Byl+C符號相反。
9. 從實(shí)際問題中抽象出二元一次不等式(組)的步驟是:
(1)根據(jù)題意,設(shè)出變量;
(2)分析問題中的變量,并根據(jù)各個(gè)不等關(guān)系列出常量與變量x,y之間的不等式;
(3)把各個(gè)不等式連同變量x,y有意義的實(shí)際范圍合在一起,組成不等式組。
相關(guān)推薦
- 高考數(shù)學(xué)知識點(diǎn):等比數(shù)列基本性質(zhì)
- 高考數(shù)學(xué)知識點(diǎn):等差數(shù)列基本性質(zhì)
- 高考數(shù)學(xué)知識點(diǎn):算法、推理與證明
- 高考數(shù)學(xué)知識點(diǎn):不等式選講
- 高考數(shù)學(xué)知識點(diǎn):坐標(biāo)系與參數(shù)方程
- 高考數(shù)學(xué)知識點(diǎn):分類與整合思想,化歸
- 高考數(shù)學(xué)知識點(diǎn):函數(shù)與方程思想,數(shù)學(xué)
- 高考數(shù)學(xué)知識點(diǎn):統(tǒng)計(jì)與統(tǒng)計(jì)案例
- 高考數(shù)學(xué)知識點(diǎn):離散型隨機(jī)變量及其分
- 高考數(shù)學(xué)知識點(diǎn):圓錐曲線的熱點(diǎn)問題
高考院校庫(挑大學(xué)·選專業(yè),一步到位!)
高校分?jǐn)?shù)線
專業(yè)分?jǐn)?shù)線
- 日期查詢