高考數(shù)學(xué)知識點:二次函數(shù)定義與性質(zhì)
來源:網(wǎng)絡(luò)資源 2019-05-06 21:31:38
二次函數(shù)的基本表示形式為y=ax2+bx+c(a≠0)。小編整理了高考數(shù)學(xué)知識點,請考生參考。
I.定義與定義表達式
一般地,自變量x和因變量y之間存在如下關(guān)系:
y=ax^2+bx+c
(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)
則稱y為x的二次函數(shù)。
二次函數(shù)表達式的右邊通常為二次三項式。
II.二次函數(shù)的三種表達式
一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)
頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)]
交點式:y=a(x-x?)(x-x?)[僅限于與x軸有交點A(x?,0)和B(x?,0)的拋物線]
注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:
h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a
III.二次函數(shù)的圖像
在平面直角坐標系中作出二次函數(shù)y=x^2的圖像,
可以看出,二次函數(shù)的圖像是一條拋物線。
相關(guān)推薦
高考院校庫(挑大學(xué)·選專業(yè),一步到位。
高校分數(shù)線
專業(yè)分數(shù)線
- 日期查詢