高考數(shù)學(xué)最易失分知識點(diǎn)
來源:網(wǎng)絡(luò)資源 2019-05-06 14:58:10
集合是近代數(shù)學(xué)中的一個(gè)重要概念,它不僅與高中數(shù)學(xué)的許多內(nèi)容有著緊密的聯(lián)系,而且已經(jīng)滲透到自然科學(xué)的眾多領(lǐng)域,應(yīng)用十分廣泛。掌握好集合的知識既是數(shù)學(xué)學(xué)習(xí)本身的需要,也是全面提高數(shù)學(xué)素養(yǎng)的一個(gè)必不可少的內(nèi)容。進(jìn)入高中,學(xué)習(xí)數(shù)學(xué)的第一課,就是集合。由于集合單元的概念抽象,符號術(shù)語多,研究方法跟學(xué)習(xí)初中數(shù)學(xué)時(shí)有著明顯的差異,致使部分同學(xué)初學(xué)集合時(shí),感到難以適應(yīng),常常因?yàn)檫@樣那樣的原因造成解題失誤,形成思維障礙,甚至影響整個(gè)高中數(shù)學(xué)的學(xué)習(xí)。為了幫助同學(xué)們解決這一問題,本文談?wù)勗诩蠈W(xué)習(xí)中值得注意的幾個(gè)事項(xiàng),供大家參考。
一、準(zhǔn)確地把握集合的概念,熟練地運(yùn)用集合與集合的關(guān)系解決具體問題
概念抽象、符號術(shù)語多是集合單元的一個(gè)顯著特點(diǎn),例如交集、并集、補(bǔ)集的概念及其表示方法,集合與元素的關(guān)系及其表示方法,集合與集合的關(guān)系及其表示方法,子集、真子集和集合相等的定義等等。這些概念、關(guān)系和表示方法,都可以作為求解集合問題的依據(jù)、出發(fā)點(diǎn)甚至是突破口。因此,要想學(xué)好集合的內(nèi)容,就必須在準(zhǔn)確地把握集合的概念,熟練地運(yùn)用集合與集合的關(guān)系解決具體問題上下功夫。
二、注意弄清集合元素的性質(zhì),學(xué)會運(yùn)用元素分析法審視集合的有關(guān)問題
眾所周知,集合可以看成是一些對象的全體,其中的每一個(gè)對象叫做這個(gè)集合的元素。集合中的元素具有“三性”:
(1)、確定性:集合中的元素應(yīng)該是確定的,不能模棱兩可。
(2)、互異性:集合中的元素應(yīng)該是互不相同的,相同的元素在集合中只能算作一個(gè)。
相關(guān)推薦
高考院校庫(挑大學(xué)·選專業(yè),一步到位。
高校分?jǐn)?shù)線
專業(yè)分?jǐn)?shù)線
- 日期查詢