高一數(shù)學教案:《直線與平面垂直的判定》教學設計
來源:網絡整理 2018-11-25 20:55:02
高一數(shù)學教案:《直線與平面垂直的判定》教學設計
一、教學目標
1.借助對圖片、實例的觀察,抽象概括出直線與平面垂直的定義,并能正確理解直線與平面垂直的定義。
2.通過直觀感知,操作確認,歸納直線與平面垂直判定的定理,并能運用判定定理證明一些空間位置關系的簡單命題,進一步培養(yǎng)學生的空間觀念。
3.讓學生親身經歷數(shù)學研究的過程,體驗探索的樂趣,增強學習數(shù)學的興趣。
二、教學重點、難點
1.教學重點:操作確認并概括出直線與平面垂直的定義和判定定理。
2.教學難點:操作確認并概括出直線與平面垂直的判定定理及初步運用。
三、課前準備
1.教師準備:教學課件
2.學生自備:
三角形紙片、鐵絲(代表直線)、紙板(代表平面)、三角板
四、教學過程設計
1.直線與平面垂直定義的建構
(1)創(chuàng)設情境
、僬埻瑢W們觀察圖片,說出旗桿與地面、高樓的側棱與地面的位置有什么關系?
②請把自己的數(shù)學書打開直立在桌面上,觀察書脊與桌面的位置有什么關系?
③請將①中旗桿與地面的位置關系畫出相應的幾何圖形。
(2)觀察歸納
①思考:一條直線與平面垂直時,這條直線與平面內的直線有什么樣的位置關系?
、诙嗝襟w演示:旗桿與它在地面上影子的位置變化。
、蹥w納出直線與平面垂直的定義及相關概念。
定義:如果直線l與平面α內的任意一條直線都垂直,我們就說直線l與平面α互相垂直,記作:l⊥α.
直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時,它們唯一的公共點P叫做垂足。
用符號語言表示為:
。3)辨析(完成下列練習):
①如果一條直線垂直于一個平面內的無數(shù)條直線,那么這條直線就與這個平面垂直。
②若a⊥α,bα,則a⊥b。
在創(chuàng)設情境中,學生練習本上畫圖,教師針對學生出現(xiàn)的問題,如不直觀、不標字母等加以強調,并指出這就叫直線與平面垂直,引出課題。
在多媒體演示時,先展示動畫1使學生感受到旗桿AB所在直線與過點B的直線都垂直。再展示動畫2使學生明確旗桿AB所在直線與地面內任意一條不過點B的直線B1C1也垂直,進而引導學生歸納出直線與平面垂直的定義。
在辨析問題中,解釋“無數(shù)”與“任何”的不同,并說明線面垂直的定義既是線面垂直的判定又是性質,線線垂直與線面垂直可以相互轉化,給出常用命題:
2.直線與平面垂直的判定定理的探究
。1)設置問題情境
提出問題:學校廣場上樹了一根新旗桿,現(xiàn)要檢驗它是否與地面垂直,你有什么好辦法?
。2)折紙試驗
如圖,請同學們拿出準備好的一塊(任意)三角形的紙片,我們一起來做一個實驗:過△ABC的頂點A翻折紙片,得到折痕AD,將翻折后的紙片豎起放置在桌面上,(BD、DC與桌面接觸).觀察并思考:
、僬酆跘D與桌面垂直嗎?
②如何翻折才能使折痕AD與桌面所在的平面垂直?
③多媒體演示翻折過程。
(3)歸納直線與平面垂直的判定定理
、偎伎迹河烧酆跘D⊥BC,翻折之后垂直關系,即AD⊥CD,AD⊥BD發(fā)生變化嗎?由此你能得到什么結論?
相關推薦
高考院校庫(挑大學·選專業(yè),一步到位。
高校分數(shù)線
專業(yè)分數(shù)線
- 日期查詢