高一數(shù)學(xué)教案:《方程的根與函數(shù)的零點》教學(xué)設(shè)計
來源:網(wǎng)絡(luò)整理 2018-11-25 19:40:16
高一數(shù)學(xué)教案:《方程的根與函數(shù)的零點》教學(xué)設(shè)計
一、內(nèi)容和內(nèi)容解析
本節(jié)課是在學(xué)生學(xué)習(xí)了《基本初等函數(shù)(Ⅰ)》的基礎(chǔ)上,學(xué)習(xí)函數(shù)與方程的第一課時,本節(jié)課中通過對二次函數(shù)圖象的繪制、分析,得到零點的概念,從而進一步探索函數(shù)零點存在性的判定,這些活動就是想讓學(xué)生在了解初等函數(shù)的基礎(chǔ)上,利用計算機描繪函數(shù)的圖象,通過對函數(shù)與方程的探究,對函數(shù)有進一步的認(rèn)識,解決方程根的存在性問題,為下一節(jié)《用二分法求方程的近似解》做準(zhǔn)備.
從教材編寫的順序來看,《方程的根與函數(shù)的零點》是必修1第三章《函數(shù)的應(yīng)用》一章的開始,其目的是使學(xué)生學(xué)會用二分法求方程近似解的方法,從中體會函數(shù)與方程之間的聯(lián)系.利用函數(shù)模型解決問題,作為一條主線貫穿了全章的始終,而方程的根與函數(shù)的零點的關(guān)系、用二分法求方程的近似解,是在建立和運用函數(shù)模型的大背景下展開的.方程的根與函數(shù)的零點的關(guān)系、用二分法求方程的近似解中均蘊涵了“函數(shù)與方程的思想”和“數(shù)形結(jié)合的思想”,建立和運用函數(shù)模型中蘊含的“數(shù)學(xué)建模思想”,是本章滲透的主要數(shù)學(xué)思想.
從知識的應(yīng)用價值來看,通過在函數(shù)與方程的聯(lián)系中體驗數(shù)學(xué)中的轉(zhuǎn)化思想的意義和價值,體驗函數(shù)是描述宏觀世界變化規(guī)律的基本數(shù)學(xué)模型,體會符號化、模型化的思想,體驗從系統(tǒng)的角度去思考局部問題的思想.
基于上述分析,確定本節(jié)的教學(xué)重點是:了解函數(shù)零點的概念,體會方程的根與函數(shù)零點之間的聯(lián)系,掌握函數(shù)零點存在性的判斷.
二、目標(biāo)和目標(biāo)解析
1.通過對二次函數(shù)圖象的描繪,了解函數(shù)零點的概念,滲透由具體到抽象思想,領(lǐng)會函數(shù)零點與相應(yīng)方程實數(shù)根之間的關(guān)系,
2.零點知識是陳述性知識,關(guān)鍵不在于學(xué)生提出這個概念。而是理解提出零點概念的作用,溝通函數(shù)與方程的關(guān)系。
3.通過對現(xiàn)實問題的分析,體會用函數(shù)系統(tǒng)的角度去思考方程的思想,使學(xué)生理解動與靜的辨證關(guān)系.掌握函數(shù)零點存在性的判斷.
4.在函數(shù)與方程的聯(lián)系中體驗數(shù)形結(jié)合思想和轉(zhuǎn)化思想的意義和價值,發(fā)展學(xué)生對變量數(shù)學(xué)的認(rèn)識,體會函數(shù)知識的核心作用.
三、教學(xué)問題診斷分析
1.零點概念的認(rèn)識.零點的概念是在分析了眾多圖象的基礎(chǔ)上,由圖象與軸的位置關(guān)系得到的一個形象的概念,學(xué)生可能會設(shè)法畫出圖象找到所有任意函數(shù)的可能存在的所有零點,但是并不是所有函數(shù)的圖象都能具體的描繪出,所以在概念的接受上有一點的障礙.
2.零點存在性的判斷.正因為f(a)·f(b)<0且圖象在區(qū)間[a,b]上連續(xù)不斷,是函數(shù)f(x)在區(qū)間[a,b]上有零點的充分而非必要條件,容易引起思維的混亂就是很自然的事了.
3.零點(或零點個數(shù))的確定.學(xué)生會作二次函數(shù)的圖象,但是要作出一般的函數(shù)圖象(或圖象的交點)就比較困難,而在這一節(jié)課最重要的恰恰就是利用函數(shù)圖象來研究函數(shù)的零點問題.這樣就在零點(或零點個數(shù))的確定上給學(xué)生帶來一定的困難.
基于上述分析,確定本節(jié)課的教學(xué)難點是:準(zhǔn)確認(rèn)識零點的概念,在合情推理中讓學(xué)生體會到判定定理的充分非必要性,能利用適當(dāng)?shù)姆椒ㄅ袛嗔泓c的存在或確定零點.
四、教學(xué)支持條件分析
考慮到學(xué)生的知識水平和理解能力,教師可借助計算機工具和構(gòu)建現(xiàn)實生活中的模型,從激勵學(xué)生探究入手,講練結(jié)合,直觀演示能使教學(xué)更富趣味性和生動性.
通過讓學(xué)生觀察、討論、辨析、畫圖,親身實踐,在函數(shù)與方程的聯(lián)系中體驗數(shù)形結(jié)合思想、轉(zhuǎn)化思想的意義和價值,發(fā)展學(xué)生對變量數(shù)學(xué)的認(rèn)識,體會函數(shù)知識的核心作用.
相關(guān)推薦
- 高一數(shù)學(xué)教案:《方程的根與函數(shù)的零點
- 高一數(shù)學(xué)教案:《用二分法求方程的近似
- 高一數(shù)學(xué)教案:《對數(shù)函數(shù)及其性質(zhì)》教
- 高一數(shù)學(xué)教案:《基于APOS理論的函數(shù)概
- 高一數(shù)學(xué)教案:《函數(shù)的單調(diào)性》教學(xué)設(shè)
- 高一數(shù)學(xué)教案:《函數(shù)模型及其應(yīng)用》教
- 高一數(shù)學(xué)教案:《函數(shù)模型及其應(yīng)用》教
- 高一數(shù)學(xué)教案:《函數(shù)模型及其應(yīng)用》教
- 高一數(shù)學(xué)教案:《函數(shù)與方程》教學(xué)設(shè)計
- 高一數(shù)學(xué)教案:《函數(shù)與方程》教學(xué)設(shè)計
高考院校庫(挑大學(xué)·選專業(yè),一步到位。
高校分?jǐn)?shù)線
專業(yè)分?jǐn)?shù)線
- 日期查詢