高三數(shù)學教案:《雙曲線復習》教學設計
來源:精品學習網(wǎng) 2018-11-14 10:50:34
本文題目:高三數(shù)學教案:雙曲線復習教案
【考綱要求】
了解雙曲線的定義,幾何圖形和標準方程,知道它的簡單性質(zhì)。
【自學質(zhì)疑】
1.雙曲線 的 軸在 軸上, 軸在 軸上,實軸長等于 ,虛軸長等于 ,焦距等于 ,頂點坐標是 ,焦點坐標是 ,
漸近線方程是 ,離心率 ,若點 是雙曲線上的點,則 , 。
2.又曲線 的左支上一點到左焦點的距離是7,則這點到雙曲線的右焦點的距離是
3.經(jīng)過兩點 的雙曲線的標準方程是 。
4.雙曲線的漸近線方程是 ,則該雙曲線的離心率等于 。
5.與雙曲線 有公共的漸近線,且經(jīng)過點 的雙曲線的方程為
【例題精講】
1.雙曲線的離心率等于 ,且與橢圓 有公共焦點,求該雙曲線的方程。
2.已知橢圓具有性質(zhì):若 是橢圓 上關于原點對稱的兩個點,點 是橢圓上任意一點,當直線 的斜率都存在,并記為 時,那么 之積是與點 位置無關的定值,試對雙曲線 寫出具有類似特性的性質(zhì),并加以證明。
3.設雙曲線 的半焦距為 ,直線 過 兩點,已知原點到直線 的距離為 ,求雙曲線的離心率。
【矯正鞏固】
1.雙曲線 上一點 到一個焦點的距離為 ,則它到另一個焦點的距離為 。
2.與雙曲線 有共同的漸近線,且經(jīng)過點 的雙曲線的一個焦點到一條漸近線的距離是 。
3.若雙曲線 上一點 到它的右焦點的距離是 ,則點 到 軸的距離是
4.過雙曲線 的左焦點 的直線交雙曲線于 兩點,若 。則這樣的直線一共有 條。
【遷移應用】
1. 已知雙曲線 的焦點到漸近線的距離是其頂點到漸近線距離的2倍,則該雙曲線的離心率
2. 已知雙曲線 的焦點為 ,點 在雙曲線上,且 ,則點 到 軸的距離為 。
3. 雙曲線 的焦距為
4. 已知雙曲線 的一個頂點到它的一條漸近線的距離為 ,則
5. 設 是等腰三角形, ,則以 為焦點且過點 的雙曲線的離心率為 .
6. 已知圓 。以圓 與坐標軸的交點分別作為雙曲線的一個焦點和頂點,則適合上述條件的雙曲線的標準方程為
相關推薦
高考院校庫(挑大學·選專業(yè),一步到位!)
高校分數(shù)線
專業(yè)分數(shù)線
- 日期查詢