全國

熱門城市 | 全國 北京 上海 廣東

華北地區(qū) | 北京 天津 河北 山西 內(nèi)蒙古

東北地區(qū) | 遼寧 吉林 黑龍江

華東地區(qū) | 上海 江蘇 浙江 安徽 福建 江西 山東

華中地區(qū) | 河南 湖北 湖南

西南地區(qū) | 重慶 四川 貴州 云南 西藏

西北地區(qū) | 陜西 甘肅 青海 寧夏 新疆

華南地區(qū) | 廣東 廣西 海南

  • 微 信
    高考

    關注高考網(wǎng)公眾號

    (www_gaokao_com)
    了解更多高考資訊

您現(xiàn)在的位置:首頁 > 高考總復習 > 高考知識點 > 高考數(shù)學知識點 > 2013備考:高考數(shù)學五大主要解題思路

2013備考:高考數(shù)學五大主要解題思路

來源:e度論壇 2012-09-12 14:19:19

  導讀:數(shù)學知識之間都有著千絲萬縷的聯(lián)系,僅僅想憑著對章節(jié)的理解就能得到高分的時代已經(jīng)遠去了。所以考生在解答數(shù)學試題時要有正確的思路,才能避免錯失分數(shù)的機會。以下是高考數(shù)學解題五大思路,供大家學習參考。

  高考數(shù)學解題思想一:函數(shù)與方程思想

  函數(shù)思想是指運用運動變化的觀點,分析和研究數(shù)學中的數(shù)量關系,通過建立函數(shù)關系(或構造函數(shù))運用函數(shù)的圖像和性質去分析問題、轉化問題和解決問題;方程思想,是從問題的數(shù)量關系入手,運用數(shù)學語言將問題轉化為方程(方程組)或不等式模型(方程、不等式等)去解決問題。利用轉化思想我們還可進行函數(shù)與方程間的相互轉化。

  高考數(shù)學解題思想二:數(shù)形結合思想

  中學數(shù)學研究的對象可分為兩大部分,一部分是數(shù),一部分是形,但數(shù)與形是有聯(lián)系的,這個聯(lián)系稱之為數(shù)形結合或形數(shù)結合。它既是尋找問題解決切入點的“法寶”,又是優(yōu)化解題途徑的“良方”,因此我們在解答數(shù)學題時,能畫圖的盡量畫出圖形,以利于正確地理解題意、快速地解決問題。

  高考數(shù)學解題思想三:特殊與一般的思想

  用這種思想解選擇題有時特別有效,這是因為一個命題在普遍意義上成立時,在其特殊情況下也必然成立,根據(jù)這一點,我們可以直接確定選擇題中的正確選項。不僅如此,用這種思想方法去探求主觀題的求解策略,也同樣精彩。

  高考數(shù)學解題思想四:極限思想解題步驟

  極限思想解決問題的一般步驟為:(1)對于所求的未知量,先設法構思一個與它有關的變量;(2)確認這變量通過無限過程的結果就是所求的未知量;(3)構造函數(shù)(數(shù)列)并利用極限計算法則得出結果或利用圖形的極限位置直接計算結果。

  高考數(shù)學解題思想五:分類討論思想

  我們常常會遇到這樣一種情況,解到某一步之后,不能再以統(tǒng)一的方法、統(tǒng)一的式子繼續(xù)進行下去,這是因為被研究的對象包含了多種情況,這就需要對各種情況加以分類,并逐類求解,然后綜合歸納得解,這就是分類討論。引起分類討論的原因很多,數(shù)學概念本身具有多種情形,數(shù)學運算法則、某些定理、公式的限制,圖形位置的不確定性,變化等均可能引起分類討論。在分類討論解題時,要做到標準統(tǒng)一,不重不漏。

更多高考數(shù)學備考方法》》

相關閱讀:

家長曬經(jīng)驗:高考數(shù)學如何得到的147高分

專家指導:新學年高中生如何制定數(shù)學學習計劃

高考數(shù)學復習:滿分生傳授數(shù)學學習秘籍

2013高考復習:解答高考數(shù)學題的12種方法

收藏

高考院校庫(挑大學·選專業(yè),一步到位。

高校分數(shù)線

專業(yè)分數(shù)線

京ICP備10033062號-2 北京市公安局海淀分局備案編號:1101081950

違法和不良信息舉報電話:010-56762110     舉報郵箱:wzjubao@tal.com

高考網(wǎng)版權所有 Copyright © 2005-2022 m.0v2773b.cn . All Rights Reserved