高二數(shù)學(xué)必修:單元知識總結(jié) 二、利用平移化簡二元二次方程
來源:網(wǎng)絡(luò)資源 2009-10-10 22:45:09
二、利用平移化簡二元二次方程
1.定義
缺xy項的二元二次方程Ax2+Cy2+Dx+Ey+F=0(A、C不同時為0)※,通過配方和平移,化為圓型或橢圓型或雙曲線型或拋物線型方程的標準形式的過程,稱為利用平移化簡二元二次方程.
A=C是方程※為圓的方程的必要條件.
A與C同號是方程※為橢圓的方程的必要條件.
A與C異號是方程※為雙曲線的方程的必要條件.
A與C中僅有一個為0是方程※為拋物線方程的必要條件.
2.對于缺xy項的二元二次方程:
Ax2+Cy2+Dx+Ey+F=0(A,C不同時為0)利用平移變換,可把圓錐曲線的一般方程化為標準方程,其方法有:①待定系數(shù)法;②配方法.
中心O′(h,k)
中心O′(h,k)
拋物線:對稱軸平行于x軸的拋物線方程為
(y-k)2=2p(x-h)或(y-k)2=-2p(x-h),
頂點O′(h,k).
對稱軸平行于y軸的拋物線方程為:(x-h)2=2p(y-k)或(x-h)2=-2p(y-k)
頂點O′(h,k).
以上方程對應(yīng)的曲線按向量a=(-h,-k)平移,就可將其方程化為圓錐曲線的標準方程的形式.
相關(guān)推薦
高考院校庫(挑大學(xué)·選專業(yè),一步到位!)
高校分數(shù)線
專業(yè)分數(shù)線
- 日期查詢