Image Modal
全國(guó)

熱門(mén)城市 | 全國(guó) 北京 上海 廣東

華北地區(qū) | 北京 天津 河北 山西 內(nèi)蒙古

東北地區(qū) | 遼寧 吉林 黑龍江

華東地區(qū) | 上海 江蘇 浙江 安徽 福建 江西 山東

華中地區(qū) | 河南 湖北 湖南

西南地區(qū) | 重慶 四川 貴州 云南 西藏

西北地區(qū) | 陜西 甘肅 青海 寧夏 新疆

華南地區(qū) | 廣東 廣西 海南

  • 微 信

    關(guān)注高考網(wǎng)公眾號(hào)

    (www_gaokao_com)
    了解更多高考資訊

  • 家長(zhǎng)幫APP

    家長(zhǎng)幫APP

    家庭教育家長(zhǎng)幫

    iPhone Android

首頁(yè) > 高考資源網(wǎng) > 高中教案 > 高三數(shù)學(xué)教案
試題

試題

資訊

標(biāo)題形式 文章列表

  • 高三數(shù)學(xué)正弦定理和余弦定理 2009-09-21

    例題5、某人在M汽車(chē)站的北偏西20的方向上的A處,觀(guān)察到點(diǎn)C處有一輛汽車(chē)沿公路向M站行駛。公路的走向是M站的北偏東40。開(kāi)始時(shí),汽車(chē)到A的距離為31千米,汽車(chē)前進(jìn)20千米后,到A的距離縮短了10千米。問(wèn)汽車(chē)還需行駛多遠(yuǎn)
  • 高三數(shù)學(xué)正弦定理3 2009-09-21

    (二)教學(xué)重、難點(diǎn)重點(diǎn):正弦定理的探索和證明及其基本應(yīng)用。難點(diǎn):已知兩邊和其中一邊的對(duì)角解三角形時(shí)判斷解的個(gè)數(shù)。(三)學(xué)法與教學(xué)用具學(xué)法:引導(dǎo)學(xué)生首先從直角三角形中揭示邊角關(guān)系:,接著就一般斜三角形進(jìn)
  • 高三數(shù)學(xué)正弦定理2 2009-09-21

    知識(shí)與技能:通過(guò)對(duì)任意三角形邊長(zhǎng)和角度關(guān)系的探索,掌握正弦定理的內(nèi)容及其證明方法;會(huì)運(yùn)用正弦定理與三角形內(nèi)角和定理解斜三角形的兩類(lèi)基本問(wèn)題。過(guò)程與方法:讓學(xué)生從已有的幾何知識(shí)出發(fā),共同探究在任意三角形
  • 高三數(shù)學(xué)正弦定理1 2009-09-21

    ⑴正弦定理是解三角形的重要定理,它反映了三角形各邊和它所對(duì)角的正弦的比的關(guān)系,并非常好的描述了任意三角形中邊與角的一種數(shù)量關(guān)系。常與三角、向量、幾何等基礎(chǔ)知識(shí)相結(jié)合命題,以考察綜合運(yùn)用數(shù)學(xué)知識(shí)的能力,
  • 高三數(shù)學(xué)正態(tài)分布2 2009-09-21

    1.標(biāo)準(zhǔn)正態(tài)分布是正態(tài)分布研究的重點(diǎn),各式各樣的正態(tài)分布可以通過(guò)轉(zhuǎn)換成標(biāo)準(zhǔn)正態(tài)曲線(xiàn),轉(zhuǎn)換后正態(tài)分布的各項(xiàng)性質(zhì)保持不變,而標(biāo)準(zhǔn)正態(tài)分布的概率又可以通過(guò)查表求得,因而標(biāo)準(zhǔn)正態(tài)分布表的使用是本節(jié)課的重點(diǎn)之一2
  • 高三數(shù)學(xué)正態(tài)分布1 2009-09-21

    1.在實(shí)際遇到的許多隨機(jī)現(xiàn)象都服從或近似服從正態(tài)分布在上一節(jié)課我們研究了當(dāng)樣本容量無(wú)限增大時(shí),頻率分布直方圖就無(wú)限接近于一條總體密度曲線(xiàn),總體密度曲線(xiàn)較科學(xué)地反映了總體分布但總體密度曲線(xiàn)的相關(guān)知識(shí)較為
  • 高三數(shù)學(xué)怎樣解數(shù)學(xué)綜合題 2009-09-21

    第一輪復(fù)習(xí)一般以知識(shí)、技能、方法的逐點(diǎn)掃描和梳理為主,綜合運(yùn)用知識(shí)為輔,第二輪復(fù)習(xí)以專(zhuān)題性復(fù)習(xí)為主,這一階段所涉及的數(shù)學(xué)問(wèn)題多半是綜合性問(wèn)題,提高解數(shù)學(xué)綜合性問(wèn)題的能力是提高高考數(shù)學(xué)成績(jī)的根本保證。解
  • 高三數(shù)學(xué)運(yùn)用向量法解題 2009-09-21

    命題意圖:本題主要考查考生應(yīng)用向量法解決向量垂直,夾角等問(wèn)題以及對(duì)立體幾何圖形的解讀能力.知識(shí)依托:解答本題的閃光點(diǎn)是以向量來(lái)論證立體幾何中的垂直問(wèn)題,這就使幾何問(wèn)題代數(shù)化,使繁瑣的論證變得簡(jiǎn)單.錯(cuò)解分
  • 高三數(shù)學(xué)圓錐曲線(xiàn)中的最值及范圍問(wèn)題 2009-09-21

    高考大綱:橢圓、雙曲線(xiàn)、拋物線(xiàn)的幾何性質(zhì)及直線(xiàn)與圓錐曲線(xiàn)的位置關(guān)系.解析幾何與代數(shù)方法的綜合.新題型分類(lèi)例析熱點(diǎn)題型1:重要不等式求最值(05浙江o理17)如圖,已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,長(zhǎng)軸的
  • 高三數(shù)學(xué)圓錐曲線(xiàn)知識(shí)整理 2009-09-21

    一、橢圓:(1)橢圓的定義:平面內(nèi)與兩個(gè)定點(diǎn)的距離的和等于常數(shù)(大于)的點(diǎn)的軌跡。第二定義:平面內(nèi)與一個(gè)定點(diǎn)的距離和到一條定直線(xiàn)的距離的比是常數(shù)的點(diǎn)的軌跡。其中:兩個(gè)定點(diǎn)叫做橢圓的焦點(diǎn),焦點(diǎn)間的距離叫
  • 高三數(shù)學(xué)圓錐曲線(xiàn)與平面向量 2009-09-21

    考試大綱:橢圓、雙曲線(xiàn)、拋物線(xiàn)的定義、標(biāo)準(zhǔn)方程、幾何性質(zhì)以及直線(xiàn)與圓錐曲線(xiàn)的位置關(guān)系,平面向量的概念,向量的坐標(biāo)運(yùn)算.圓錐曲線(xiàn)與平面向量的綜合.新題型分類(lèi)例析熱點(diǎn)題型1:直線(xiàn)與圓錐曲線(xiàn)的位置關(guān)系(05重慶o
  • 高三數(shù)學(xué)圓錐曲線(xiàn)應(yīng)用2 2009-09-21

    例3.已知頂點(diǎn)為原點(diǎn),焦點(diǎn)在軸上的拋物線(xiàn),其內(nèi)接的重心是焦點(diǎn),若直線(xiàn)的方程為,(1)求拋物線(xiàn)方程;(2)軸上是否存在定點(diǎn),使過(guò)的動(dòng)直線(xiàn)與拋物線(xiàn)交于兩點(diǎn),滿(mǎn)足?證明你的結(jié)論.點(diǎn)擊下載:http://files.eduu.com
  • 高三數(shù)學(xué)圓錐曲線(xiàn)應(yīng)用1 2009-09-21

    二.知識(shí)要點(diǎn):1.與圓錐曲線(xiàn)有關(guān)的參數(shù)問(wèn)題的討論常用的方法有兩種:(1)不等式(組)求解法:利用題意結(jié)合圖形列出所討論的參數(shù)適合的不等式(組),通過(guò)解不等式(組)得出參數(shù)的變化范圍;(2)函數(shù)值域求解法
  • 高三數(shù)學(xué)圓錐曲線(xiàn)及軌跡問(wèn)題 2009-09-21

    求曲線(xiàn)軌跡方程的思想方法體現(xiàn)了解析幾何最基本也是重要的解題思想方法,因而求曲線(xiàn)軌跡方程成為新高考的熱點(diǎn)內(nèi)容.試題多以解答題形式出現(xiàn),它是考查我們根據(jù)曲線(xiàn)的幾何特征熟練地運(yùn)用解析幾何知識(shí)將其轉(zhuǎn)化為數(shù)量關(guān)系,
  • 高三數(shù)學(xué)圓錐曲線(xiàn)復(fù)習(xí)與小結(jié)6 2009-09-21

    6.已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,連接它的四個(gè)頂點(diǎn)得到的四邊形的面積是4,分別連接橢圓上一點(diǎn)(頂點(diǎn)除外)和橢圓的四個(gè)頂點(diǎn),連得線(xiàn)段所在四條直線(xiàn)的斜率的乘積為,求這個(gè)橢圓的標(biāo)準(zhǔn)方程.7.設(shè)拋物線(xiàn)y2=2px(p
  • 高三數(shù)學(xué)圓錐曲線(xiàn)復(fù)習(xí)與小結(jié)5 2009-09-21

    例1寫(xiě)出長(zhǎng)軸的頂點(diǎn)坐標(biāo)是A(-2,4),A(-2,-2),半焦距的長(zhǎng)是的橢圓方程.例2(1)橢圓的對(duì)稱(chēng)軸平行于坐標(biāo)軸,中心在(-2,1),a=3,b=2,焦點(diǎn)在直線(xiàn)y=1上,求它的方程.(2)求半實(shí)軸長(zhǎng)是2,兩焦點(diǎn)坐標(biāo)
  • 高三數(shù)學(xué)圓錐曲線(xiàn)復(fù)習(xí)與小結(jié)4 2009-09-21

    教學(xué)目標(biāo):通過(guò)對(duì)例題的分析、討論,使學(xué)生進(jìn)一步明確本章的主要數(shù)學(xué)思想方法及如何應(yīng)用基本的數(shù)學(xué)思想方法解題.教學(xué)過(guò)程一、例題例1已知拋物線(xiàn)C:y2=4x,若橢圓的左焦點(diǎn)及相應(yīng)準(zhǔn)線(xiàn)與C的焦點(diǎn)F和準(zhǔn)線(xiàn)l分別重合(如圖所
  • 高三數(shù)學(xué)圓錐曲線(xiàn)復(fù)習(xí)與小結(jié)3 2009-09-21

    教學(xué)目標(biāo):使學(xué)生掌握與圓錐曲線(xiàn)有關(guān)的幾種典型題,如圓錐曲線(xiàn)的弦長(zhǎng)求法、與圓錐曲線(xiàn)有關(guān)的最值(極值)問(wèn)題、與圓錐曲線(xiàn)有關(guān)的證明問(wèn)題以及圓錐曲線(xiàn)與圓錐曲線(xiàn)相交問(wèn)題等.教學(xué)重點(diǎn):圓錐曲線(xiàn)的弦長(zhǎng)求法、與圓錐曲線(xiàn)
  • 高三數(shù)學(xué)圓錐曲線(xiàn)復(fù)習(xí)與小結(jié)2 2009-09-21

    教學(xué)目標(biāo):1.使學(xué)生掌握點(diǎn)、直線(xiàn)與圓錐曲線(xiàn)的位置的判定及直線(xiàn)與圓錐曲線(xiàn)相交的有關(guān)問(wèn)題.2.培養(yǎng)學(xué)生綜合運(yùn)用直線(xiàn)、圓錐曲線(xiàn)的各方面知識(shí)的能力.教學(xué)重點(diǎn):直線(xiàn)與圓錐曲線(xiàn)的相交的有關(guān)問(wèn)題.教學(xué)難點(diǎn):圓錐曲線(xiàn)上存
  • 高三數(shù)學(xué)圓錐曲線(xiàn)復(fù)習(xí)與小結(jié)1 2009-09-21

    1.直接法由題設(shè)所給(或通過(guò)分析圖形的幾何性質(zhì)而得出)的動(dòng)點(diǎn)所滿(mǎn)足的幾何條件列出等式,再用坐標(biāo)代替這等式,化簡(jiǎn)得曲線(xiàn)的方程,這種方法叫直接法.例1(1)求和定圓x2+y2=k2的圓周的最小距離等于k的動(dòng)點(diǎn)P的軌跡方程
  • 高三數(shù)學(xué)圓錐曲線(xiàn)定義應(yīng)用 2009-09-21

    例1、已知兩個(gè)定圓O1和O2,它們的半徑分別為1和2,且|O1O2|=4,動(dòng)圓M與圓O1內(nèi)切,又與圓O2外切,建立適當(dāng)?shù)淖鴺?biāo)系,求動(dòng)圓心M的軌跡方程,并說(shuō)明軌跡是何種曲線(xiàn)。解:以O(shè)1O2的中點(diǎn)O為原點(diǎn),O1O2所在直線(xiàn)為軸建立平面
  • 高三數(shù)學(xué)圓錐曲線(xiàn)的綜合問(wèn)題 2009-09-21

    1知識(shí)精講:圓錐曲線(xiàn)的綜合問(wèn)題包括:解析法的應(yīng)用,數(shù)形結(jié)合的思想,與圓錐曲線(xiàn)有關(guān)的定值、最值等問(wèn)題,主要沿著兩條主線(xiàn),即圓錐曲線(xiàn)科內(nèi)綜合與代數(shù)間的科間綜合,靈活運(yùn)用解析幾何的常用方法,解決圓錐曲線(xiàn)的綜
  • 高三數(shù)學(xué)圓錐曲線(xiàn)的應(yīng)用 2009-09-21

    一、基本知識(shí)概要:解析幾何在日常生活中應(yīng)用廣泛,如何把實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題是解決應(yīng)用題的關(guān)鍵,而建立數(shù)學(xué)模型是實(shí)現(xiàn)應(yīng)用問(wèn)題向數(shù)學(xué)問(wèn)題轉(zhuǎn)化的常用常用方法。本節(jié)主要通過(guò)圓錐曲線(xiàn)在實(shí)際問(wèn)題中的應(yīng)用,說(shuō)明數(shù)
  • 高三數(shù)學(xué)圓錐曲線(xiàn)的方程 2009-09-21

    考試要求:1、掌握橢圓的定義、標(biāo)準(zhǔn)方程和橢圓的簡(jiǎn)單幾何性質(zhì),理解橢圓的參數(shù)方程。2、掌握雙曲線(xiàn)的定義、標(biāo)準(zhǔn)方程和雙曲線(xiàn)的簡(jiǎn)單幾何性質(zhì)。3、掌握拋物線(xiàn)的定義、標(biāo)準(zhǔn)方程和拋物線(xiàn)的簡(jiǎn)單幾何性質(zhì)。4、了解圓錐曲線(xiàn)
  • 高三數(shù)學(xué)圓錐曲線(xiàn)創(chuàng)新題 2009-09-21

    ⒈1先看兩個(gè)例子(本文各節(jié)自成例序)例1一直線(xiàn)與x軸、y軸都不平行,也不過(guò)原點(diǎn);點(diǎn)M(x,y)在上;點(diǎn)P(2,1),Q(3x+2y-1,3x-2y+1)在與垂直的直線(xiàn)上。求直線(xiàn)的方程。例2一張白紙上僅有雙曲線(xiàn)的圖象,試用圓規(guī)與直尺畫(huà)
  • 高三數(shù)學(xué)圓錐曲線(xiàn)3 2009-09-21

    二.例題分析:例1.已知雙曲線(xiàn):,是右頂點(diǎn),是右焦點(diǎn),點(diǎn)在軸正半軸上,且滿(mǎn)足成等比數(shù)列,過(guò)點(diǎn)作雙曲線(xiàn)在第一、三象限內(nèi)的漸近線(xiàn)的垂線(xiàn),垂足為,(1)求證:;(2)若與雙曲線(xiàn)的左、右兩支分別交于點(diǎn),求雙曲線(xiàn)
  • 高三數(shù)學(xué)圓錐曲線(xiàn)2 2009-09-21

    【命題趨向】解析幾何例命題趨勢(shì):1.注意考查直線(xiàn)的基本概念,求在不同條件下的直線(xiàn)方程,直線(xiàn)的位置關(guān)系,此類(lèi)題大多都屬中、低檔題,以選擇、填空題的形式出現(xiàn),每年必考2.考查直線(xiàn)與二次曲線(xiàn)的普通方程,屬低檔題
  • 高三數(shù)學(xué)圓錐曲線(xiàn)1 2009-09-21

    學(xué)習(xí)圓錐曲線(xiàn)時(shí)首先要掌握好三種圓錐曲線(xiàn)的各自定義及它們的統(tǒng)一定義,這是學(xué)好這部分內(nèi)容的前提和關(guān)鍵。其次要結(jié)合各種數(shù)學(xué)思想,如數(shù)形結(jié)合、分類(lèi)討論、函數(shù)和方程及極限等數(shù)學(xué)思想和方法來(lái)剖析和解決問(wèn)題。本文將
  • 高三數(shù)學(xué)圓的方程4 2009-09-21

    (5)圓系方程:i)過(guò)圓C:x2+y2+Dx+Ey+F=0和直線(xiàn)l:Ax+By+C=0的交點(diǎn)的圓的方程為x2+y2+Dx+Ey+F+(Ax+By+C)=0ii)過(guò)兩圓C1:x2+y2+D1x+E1y+F1=0,C2:x2+y2+D2x+E2y+F2=0的交點(diǎn)的圓的方程為x2+y2+D1x+E1y+F1+(x2+y2+D2x+E
  • 高三數(shù)學(xué)圓的方程3 2009-09-21

    本節(jié)為第三課時(shí)講解圓的參數(shù)方程為了突出重點(diǎn),突破難點(diǎn),可以對(duì)本節(jié)的例題、練習(xí)進(jìn)行適當(dāng)?shù)恼{(diào)整和組合,并安排一些變式練習(xí)將參數(shù)方程化為普通方程時(shí),常用的消參方法有:代入法、加減法、換元法等要注意不能縮小或
  • 歡迎掃描二維碼
    關(guān)注高考網(wǎng)微信
    ID:www_gaokao_com