高考數(shù)學(xué)?碱}型和答題技巧
2023-05-04 11:16:17網(wǎng)絡(luò)資源
解決絕對值問題
主要包括化簡、求值、方程、不等式、函數(shù)等題,基本思路是:把含絕對值的問題轉(zhuǎn)化為不含絕對值的問題。
具體轉(zhuǎn)化方法有:
①分類討論法:根據(jù)絕對值符號中的數(shù)或式子的正、零、負分情況去掉絕對值。
、诹泓c分段討論法:適用于含一個字母的多個絕對值的情況。
③兩邊平方法:適用于兩邊非負的方程或不等式。
、軒缀我饬x法:適用于有明顯幾何意義的情況。
因式分解
根據(jù)項數(shù)選擇方法和按照一般步驟是順利進行因式分解的重要技巧。因式分解的一般步驟是:
提取公因式
選擇用公式
十字相乘法
分組分解法
拆項添項法
配方法
利用完全平方公式把一個式子或部分化為完全平方式就是配方法,它是數(shù)學(xué)中的重要方法和技巧。配方法的主要根據(jù)有:
4.換元法
解某些復(fù)雜的特型方程要用到“換元法”。換元法解方程的一般步驟是:
設(shè)元一換兀一解兀一還元
5.待定系數(shù)法
待定系數(shù)法是在已知對象形式式的條件下求對象的一種方法。適用于求點的坐標、函數(shù)解析式、曲線方程等重要問題的解決。其解題步驟是:①設(shè)②列③解④寫
6.復(fù)雜代數(shù)等式
復(fù)雜代數(shù)等式型條件的使用技巧:左邊化零,右邊變形。
、僖蚴椒纸庑
、谂涑善椒叫
數(shù)學(xué)中兩個最偉大的解題思路
求值的思路列欲求值字母的方程或方程組
2)求取值范圍的思路列欲求范圍字母的不等式或不等式組
7.化簡二次根式
基本思路是:把√m化成完全平方式。即:
8.觀察法
9.代數(shù)式求值
方法有:
直接代入法
化簡代入法
適當變形法(和積代入法)
注意:當求值的代數(shù)式是字母的“對稱式”時,通?梢曰癁樽帜“和與積”的形式,從而用“和積代入法”求值。
10.解含參方程
方程中除過未知數(shù)以外,含有的其它字母叫參數(shù),這種方程叫含參方程。解含參方程一般要用‘分類討論法’,其原則是:
按照類型求解
根據(jù)需要討論
分類寫出結(jié)論
11.恒相等成立的有用條件
。1)ax+b=0對于任意×都成立關(guān)于x的萬程ax+b=0有無數(shù)個解a=0且b=0。
(2)ax2+bx+C=0對于任意×都成立關(guān)于x的方程ax2+bx+C=0有無數(shù)解a=0、b=0、C=0。
12.恒不等成立的條件
由一元二次不等式解集為R的有關(guān)結(jié)論容易得到下列恒不等成立的條件:
13.平移規(guī)律.
圖像的平移規(guī)律是研究復(fù)雜函數(shù)的重要方法。
14.圖像法
討論函數(shù)性質(zhì)的重要方法是圖像法﹣看圖像、得性質(zhì)。
定義域圖像在X軸上對應(yīng)的部分
值域圖像在Y軸上對應(yīng)的部分
單調(diào)性從左向右看,連續(xù)上升的一段在X軸上對應(yīng)的區(qū)間是增區(qū)間;從左向右看,連續(xù)下降的一段在X軸上對應(yīng)的區(qū)間是減區(qū)間。最值圖像點處有值,圖像最低點處有最小值奇偶性關(guān)于Y軸對稱是偶函數(shù),關(guān)于原點對稱是奇函數(shù)
.15.函數(shù)、方程、不等式間的重要關(guān)系
方程的根→函數(shù)圖像與x軸交點橫坐標→不等式解集端點
基本函數(shù)在區(qū)間上的值域
我們學(xué)過的一次函數(shù)、反比例函數(shù)、二次函數(shù)等有名稱的函數(shù)是基本函數(shù)。
基本函數(shù)求值域或最值有兩種情況:第一種是定義域沒有特別限制時——記憶法或結(jié)論法;第二種是定義域有特別限制時——圖像截斷法,一般思路是:畫出圖像→截出一段→得出結(jié)論
最值型應(yīng)用題的解法應(yīng)用題中,涉及“一個變量取什么值時另一個變量取得最大值或最小值”的問題是最值型應(yīng)用題。
解決最值型應(yīng)用題的基本思路是函數(shù)思想法,其解題步驟是:設(shè)變量→列函數(shù)→求最值→寫結(jié)論
注意:
1、高次不等式首先要用移項和因式分解的方法化為“左邊乘積、右邊是零”的形式。
。病⒎质讲坏仁揭话悴荒苡脙蛇叾汲巳シ帜傅姆椒▉斫,要通過移項、通分合并、因式分解的方法化為“商零式”,用穿線法解。
高考數(shù)學(xué)答題技巧及方法
函數(shù)或方程或不等式的題目,先直接思考后建立三者的聯(lián)系。首先考慮定義域,其次使用“三合一
如果在方程或是不等式中出現(xiàn)超越式,優(yōu)先選擇數(shù)形結(jié)合的思想方法;
面對含有參數(shù)的初等函數(shù)來說,在研究的時候應(yīng)該抓住參數(shù)沒有影響到的不變的性質(zhì)。如所過的定點,二次函數(shù)的對稱軸;
選擇與填空中出現(xiàn)不等式的題目,優(yōu)選特殊值法;
求參數(shù)的取值范圍,應(yīng)該建立關(guān)于參數(shù)的等式或是不等式,用函數(shù)的定義域或是值域或是解不等式完成,在對式子變形的過程中,優(yōu)先選擇分離參數(shù)的方法;
恒成立問題或是它的反面,可以轉(zhuǎn)化為最值問題,注意二次函數(shù)的應(yīng)用,靈活使用閉區(qū)間上的最值,分類討論的思想,分類討論應(yīng)該不重復(fù)不遺漏;
7曲線的曬日優(yōu)牛冼擇它們的定ツ完成直線與圓錐曲線相交問題,若與弦的中點有關(guān),選擇設(shè)而不求點差法,與弦的中點無關(guān),選擇韋達定理公式法;使用韋達定理必須先考慮是否為二次及根的判別式;
8、求曲線方程的題目,如果知道曲線的形狀,則可選擇待定系數(shù)法,如果不知道曲線的形狀,則所用的步驟為建系、設(shè)點、列式、化簡(注意去掉不符合條件的特殊點);
9、求橢圓或是雙曲線的離心率,建立關(guān)于a、b、c之間的關(guān)系等式即可;
10、三角函數(shù)求周期、單調(diào)區(qū)間或是最值,優(yōu)先考慮化為一次同角弦函數(shù),然后使用輔助角公式解答;解三角形的題目,重視內(nèi)角和定理的使用;與向量聯(lián)系的題目,注意向量角的范圍;
11、數(shù)列的題目與和有關(guān),優(yōu)選和通公式,優(yōu)選作差的方法注意歸納、猜想之后證明;猜想的方向是兩種特殊數(shù)列;解答的時候注意使用通項公式及前n項和公式,體會方程的思想;
12、立體幾何第一問如果是為建系服務(wù)的,一定用傳統(tǒng)做法完成,如果不是,可以從第一問開始就建系完成;注意向量角與線線角、線面角、面面角都不相同,熟練掌握它們之間的三角函數(shù)值的轉(zhuǎn)化;錐體體積的計算注意系數(shù)1/3,而三角形面積的計算注意系數(shù)1/2;與球有關(guān)的題目也不得不防,注意連接“心心距創(chuàng)造直角三角形解題
13、導(dǎo)數(shù)的題目常規(guī)的一般不難,但要注意解題的層次與步驟,如果要用構(gòu)造函數(shù)證明不等式,可從已知或是前問中找到突破口,必要時應(yīng)該放棄重視幾何意義的應(yīng)用,注意點是否在曲線上;
14、概率的題目如果出解答題,應(yīng)該先設(shè)事件,然后寫出使用公式的理由,當然要注意步驟的多少決定解答的詳略;如果有分布列,則概率和為1是檢驗正確與否的重要途徑;
15、遇到復(fù)雜的式子可以用換元法,使用換元法必須注意新元的取值范圍,有勾股定理型的已知,可使用三角換元來完成;
16、注意概率分布中的二項分布,二項式定理中的通項公式的使用與賦值的方法,排列組合中的枚舉法,全稱與特稱命題的否定寫法,取值范或是不等式的解的端點能否取到需單獨驗證,用點斜式或斜截式方程的時候考慮斜率是否存在等;
17、絕對值問題優(yōu)先選擇去絕對值,去絕對值優(yōu)先選擇使用定義;
18、與平移有關(guān)的,注意口訣“左加右減,上加下減”只用于函數(shù),沿向量平移一定要使用平移公式完成
19、關(guān)于中心對稱問題,只需使用中點坐標公式就可以,關(guān)于軸對稱問題,注意兩個等式的運用:一是垂直,一是中點在對稱軸上。
相關(guān)推薦:
高考數(shù)學(xué)復(fù)習方法
數(shù)學(xué)理解能力差怎么提高
最新高考資訊、高考政策、考前準備、志愿填報、錄取分數(shù)線等
高考時間線的全部重要節(jié)點
盡在"高考網(wǎng)"微信公眾號