全國

熱門城市 | 全國 北京 上海 廣東

華北地區(qū) | 北京 天津 河北 山西 內(nèi)蒙古

東北地區(qū) | 遼寧 吉林 黑龍江

華東地區(qū) | 上海 江蘇 浙江 安徽 福建 江西 山東

華中地區(qū) | 河南 湖北 湖南

西南地區(qū) | 重慶 四川 貴州 云南 西藏

西北地區(qū) | 陜西 甘肅 青海 寧夏 新疆

華南地區(qū) | 廣東 廣西 海南

  • 微 信
    高考

    關(guān)注高考網(wǎng)公眾號

    (www_gaokao_com)
    了解更多高考資訊

首頁 > 高考總復(fù)習(xí) > 高考數(shù)學(xué)復(fù)習(xí)方法 > 高中數(shù)學(xué)必修一總結(jié)

高中數(shù)學(xué)必修一總結(jié)

2019-01-30 19:11:05三好網(wǎng)

  1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

  2、集合的中元素的三個特性:

  1.元素的確定性;2.元素的互異性;3.元素的無序性

  說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。

  (2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

  (3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

  (4)集合元素的三個特性使集合本身具有了確定性和整體性。

  3、集合的表示:{…}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

  1.用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

  2.集合的表示方法:列舉法與描述法。

  注意啊:常用數(shù)集及其記法:

  非負(fù)整數(shù)集(即自然數(shù)集)記作:N

  正整數(shù)集N*或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R

  關(guān)于“屬于”的概念

  集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A

  列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。

  描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。

  ①語言描述法:例:{不是直角三角形的三角形}

 、跀(shù)學(xué)式子描述法:例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}

  4、集合的分類:

  1.有限集含有有限個元素的集合

  2.無限集含有無限個元素的集合

  3.空集不含任何元素的集合例:{x|x2=-5}

  二、集合間的基本關(guān)系

  1.“包含”關(guān)系—子集

  注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

  2.“相等”關(guān)系(5≥5,且5≤5,則5=5)

  實例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同”

  結(jié)論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

 、偃魏我粋集合是它本身的子集。AíA

 、谡孀蛹:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

 、廴绻鸄íB,BíC,那么AíC

 、苋绻鸄íB同時BíA那么A=B

  3.不含任何元素的集合叫做空集,記為Φ

  規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

  三、集合的運算

  1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.

  記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.

  2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.

  3、交集與并集的性質(zhì):A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,

  A∪φ=A,A∪B=B∪A.

  4、全集與補集

  (1)補集:設(shè)S是一個集合,A是S的一個子集(即),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)

  記作:CSA即CSA={x|x?S且x?A}

  S

  CsA

  A

  (2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。

  (3)性質(zhì):⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U

  二、函數(shù)的有關(guān)概念

  1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個函數(shù).記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.

  注意:2如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個式子有意義的實數(shù)的集合;3函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.

  定義域補充

  能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域,求函數(shù)的定義域時列不等式組的主要依據(jù)是:(1)分式的分母不等于零;(2)偶次方根的被開方數(shù)不小于零;(3)對數(shù)式的真數(shù)必須大于零;(4)指數(shù)、對數(shù)式的底必須大于零且不等于1.(5)如果函數(shù)是由一些基本函數(shù)通過四則運算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數(shù)為零底不可以等于零(6)實際問題中的函數(shù)的定義域還要保證實際問題有意義.

  (又注意:求出不等式組的解集即為函數(shù)的定義域。)

  構(gòu)成函數(shù)的三要素:定義域、對應(yīng)關(guān)系和值域

  再注意:(1)構(gòu)成函數(shù)三個要素是定義域、對應(yīng)關(guān)系和值域.由于值域是由定義域和對應(yīng)關(guān)系決定的,所以,如果兩個函數(shù)的定義域和對應(yīng)關(guān)系完全一致,即稱這兩個函數(shù)相等(或為同一函數(shù))(2)兩個函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。相同函數(shù)的判斷方法:①表達(dá)式相同;②定義域一致(兩點必須同時具備)

  (見課本21頁相關(guān)例2)

  值域補充

  (1)、函數(shù)的值域取決于定義域和對應(yīng)法則,不論采取什么方法求函數(shù)的值域都應(yīng)先考慮其定義域.(2).應(yīng)熟悉掌握一次函數(shù)、二次函數(shù)、指數(shù)、對數(shù)函數(shù)及各三角函數(shù)的值域,它是求解復(fù)雜函數(shù)值域的基礎(chǔ)。

  3.函數(shù)圖象知識歸納

  (1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象.

  C上每一點的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標(biāo)的點(x,y),均在C上.即記為C={P(x,y)|y=f(x),x∈A}

  圖象C一般的是一條光滑的連續(xù)曲線(或直線),也可能是由與任意平行與Y軸的直線最多只有一個交點的若干條曲線或離散點組成。

  (2)畫法

  A、描點法:根據(jù)函數(shù)解析式和定義域,求出x,y的一些對應(yīng)值并列表,以(x,y)為坐標(biāo)在坐標(biāo)系內(nèi)描出相應(yīng)的點P(x,y),最后用平滑的曲線將這些點連接起來.

  B、圖象變換法(請參考必修4三角函數(shù))

  高一數(shù)學(xué)必修1常用變換方法有三種,即平移變換、伸縮變換和對稱變換

  (3)作用:

  1、直觀的看出函數(shù)的性質(zhì);2、利用數(shù)形結(jié)合的方法分析解題的思路。提高解題的速度。

  發(fā)現(xiàn)解題中的錯誤。

  4.快去了解區(qū)間的概念

  (1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;(2)無窮區(qū)間;(3)區(qū)間的數(shù)軸表示.

  5.什么叫做映射

  一般地,設(shè)A、B是兩個非空的集合,如果按某一個確定的對應(yīng)法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應(yīng),那么就稱對應(yīng)f:AB為從集合A到集合B的一個映射。記作“f:AB”

  給定一個集合A到B的映射,如果a∈A,b∈B.且元素a和元素b對應(yīng),那么,我們把元素b叫做元素a的象,元素a叫做元素b的原象

  說明:函數(shù)是一種特殊的映射,映射是一種特殊的對應(yīng),①集合A、B及對應(yīng)法則f是確定的;②對應(yīng)法則有“方向性”,即強調(diào)從集合A到集合B的對應(yīng),它與從B到A的對應(yīng)關(guān)系一般是不同的;③對于映射f:A→B來說,則應(yīng)滿足:(Ⅰ)集合A中的每一個元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中對應(yīng)的象可以是同一個;(Ⅲ)不要求集合B中的每一個元素在集合A中都有原象。

  常用的函數(shù)表示法及各自的優(yōu)點:

  1函數(shù)圖象既可以是連續(xù)的曲線,也可以是直線、折線、離散的點等等,注意判斷一個圖形是否是函數(shù)圖象的依據(jù);2解析法:必須注明函數(shù)的定義域;3圖象法:描點法作圖要注意:確定函數(shù)的定義域;化簡函數(shù)的解析式;觀察函數(shù)的特征;4列表法:選取的自變量要有代表性,應(yīng)能反映定義域的特征.

  注意啊:解析法:便于算出函數(shù)值。列表法:便于查出函數(shù)值。圖象法:便于量出函數(shù)值

  補充一:分段函數(shù)(參見課本P24-25)

  在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。在不同的范圍里求函數(shù)值時必須把自變量代入相應(yīng)的表達(dá)式。分段函數(shù)的解析式不能寫成幾個不同的方程,而就寫函數(shù)值幾種不同的表達(dá)式并用一個左大括號括起來,并分別注明各部分的自變量的取值情況.(1)分段函數(shù)是一個函數(shù),不要把它誤認(rèn)為是幾個函數(shù);(2)分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集.

  補充二:復(fù)合函數(shù)

  如果y=f(u),(u∈M),u=g(x),(x∈A),則y=f[g(x)]=F(x),(x∈A)稱為f、g的復(fù)合函數(shù)。

  例如:y=2sinXy=2cos(X2+1)

  7.函數(shù)單調(diào)性

  (1).增函數(shù)

  設(shè)函數(shù)y=f(x)的定義域為I,如果對于定義域I內(nèi)的某個區(qū)間D內(nèi)的任意兩個自變量x1,x2,當(dāng)x1

  如果對于區(qū)間D上的任意兩個自變量的值x1,x2,當(dāng)x1

  注意:1函數(shù)的單調(diào)性是在定義域內(nèi)的某個區(qū)間上的性質(zhì),是函數(shù)的局部性質(zhì);

  2必須是對于區(qū)間D內(nèi)的任意兩個自變量x1,x2;當(dāng)x1

  (2)圖象的特點

  如果函數(shù)y=f(x)在某個區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.

  (3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法

  (A)定義法:

  1任取x1,x2∈D,且x1

  (B)圖象法(從圖象上看升降)_

  (C)復(fù)合函數(shù)的單調(diào)性

  復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律如下:

  函數(shù)

  單調(diào)性

  u=g(x)

  增

  增

  減

  減

  y=f(u)

  增

  減

  增

  減

  y=f[g(x)]

  增

  減

  減

  增

  注意:1、函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.2、還記得我們在選修里學(xué)習(xí)簡單易行的導(dǎo)數(shù)法判定單調(diào)性嗎?

  8.函數(shù)的奇偶性

  (1)偶函數(shù)

  一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).

  (2)奇函數(shù)

  一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).

  注意:1函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);函數(shù)可能沒有奇偶性,也可能既是奇函數(shù)又是偶函數(shù)。

  2由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個必要條件是,對于定義域內(nèi)的任意一個x,則-x也一定是定義域內(nèi)的一個自變量(即定義域關(guān)于原點對稱).

  (3)具有奇偶性的函數(shù)的圖象的特征

  偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱.

  總結(jié):利用定義判斷函數(shù)奇偶性的格式步驟:1首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點對稱;2確定f(-x)與f(x)的關(guān)系;3作出相應(yīng)結(jié)論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù).

  注意。汉瘮(shù)定義域關(guān)于原點對稱是函數(shù)具有奇偶性的必要條件.首先看函數(shù)的定義域是否關(guān)于原點對稱,若不對稱則函數(shù)是非奇非偶函數(shù).若對稱,(1)再根據(jù)定義判定;(2)有時判定f(-x)=±f(x)比較困難,可考慮根據(jù)是否有f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;(3)利用定理,或借助函數(shù)的圖象判定.

  9、函數(shù)的解析表達(dá)式

  (1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個變量之間的函數(shù)關(guān)系時,一是要求出它們之間的對應(yīng)法則,二是要求出函數(shù)的定義域.

  (2).求函數(shù)的解析式的主要方法有:待定系數(shù)法、換元法、消參法等,如果已知函數(shù)解析式的構(gòu)造時,可用待定系數(shù)法;已知復(fù)合函數(shù)f[g(x)]的表達(dá)式時,可用換元法,這時要注意元的取值范圍;當(dāng)已知表達(dá)式較簡單時,也可用湊配法;若已知抽象函數(shù)表達(dá)式,則常用解方程組消參的方法求出f(x)

  10.函數(shù)最大(小)值(定義見課本p36頁)

  1利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值2利用圖象求函數(shù)的最大(小)值3利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值:如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有最大值f(b);如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b);

  第二章基本初等函數(shù)

  一、指數(shù)函數(shù)

  (一)指數(shù)與指數(shù)冪的運算

  1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.

  當(dāng)是奇數(shù)時,正數(shù)的次方根是一個正數(shù),負(fù)數(shù)的次方根是一個負(fù)數(shù).此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).

  當(dāng)是偶數(shù)時,正數(shù)的次方根有兩個,這兩個數(shù)互為相反數(shù).此時,正數(shù)的正的次方根用符號表示,負(fù)的次方根用符號-表示.正的次方根與負(fù)的次方根可以合并成±(>0).由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。

  注意:當(dāng)是奇數(shù)時,,當(dāng)是偶數(shù)時,

  2.分?jǐn)?shù)指數(shù)冪

  正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:

  0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義

  指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.

  3.實數(shù)指數(shù)冪的運算性質(zhì)

  (1)?;

  (2);

  (3).

  (二)指數(shù)函數(shù)及其性質(zhì)

  1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域為R.

  注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.

  2、指數(shù)函數(shù)的圖象和性質(zhì)

  a>1

  0

  圖象特征

  函數(shù)性質(zhì)

  向x、y軸正負(fù)方向無限延伸

  函數(shù)的定義域為R

  圖象關(guān)于原點和y軸不對稱

  非奇非偶函數(shù)

  函數(shù)圖象都在x軸上方

  函數(shù)的值域為R+

  函數(shù)圖象都過定點(0,1)

  自左向右看,

  圖象逐漸上升

  自左向右看,

  圖象逐漸下降

  增函數(shù)

  減函數(shù)

  在第一象限內(nèi)的圖象縱坐標(biāo)都大于1

  在第一象限內(nèi)的圖象縱坐標(biāo)都小于1

  在第二象限內(nèi)的圖象縱坐標(biāo)都小于1

  在第二象限內(nèi)的圖象縱坐標(biāo)都大于1

  圖象上升趨勢是越來越陡

  圖象上升趨勢是越來越緩

  函數(shù)值開始增長較慢,到了某一值后增長速度極快;

  函數(shù)值開始減小極快,到了某一值后減小速度較慢;

  注意:利用函數(shù)的單調(diào)性,結(jié)合圖象還可以看出:

  (1)在[a,b]上,值域是或;

  (2)若,則;取遍所有正數(shù)當(dāng)且僅當(dāng);

  (3)對于指數(shù)函數(shù),總有;

  (4)當(dāng)時,若,則;

  二、對數(shù)函數(shù)

  (一)對數(shù)

  1.對數(shù)的概念:一般地,如果,那么數(shù)叫做以為底的對數(shù),記作:(—底數(shù),—真數(shù),—對數(shù)式)

  說明:1注意底數(shù)的限制,且;

  2;

  3注意對數(shù)的書寫格式.

  兩個重要對數(shù):

  1常用對數(shù):以10為底的對數(shù);

  2自然對數(shù):以無理數(shù)為底的對數(shù)的對數(shù).

  對數(shù)式與指數(shù)式的互化

  對數(shù)式指數(shù)式

  對數(shù)底數(shù)←→冪底數(shù)

  對數(shù)←→指數(shù)

  真數(shù)←→冪

  (二)對數(shù)的運算性質(zhì)

  如果,且,,,那么:

  1?+;

  2-;

  3.

  注意:換底公式

  (,且;,且;).

  利用換底公式推導(dǎo)下面的結(jié)論(1);(2).

  (二)對數(shù)函數(shù)

  1、對數(shù)函數(shù)的概念:函數(shù),且叫做對數(shù)函數(shù),其中是自變量,函數(shù)的定義域是(0,+∞).

  注意:1對數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別。

  如:,都不是對數(shù)函數(shù),而只能稱其為對數(shù)型函數(shù).

  2對數(shù)函數(shù)對底數(shù)的限制:,且.

  2、對數(shù)函數(shù)的性質(zhì):

  a>1

  0

  圖象特征

  函數(shù)性質(zhì)

  函數(shù)圖象都在y軸右側(cè)

  函數(shù)的定義域為(0,+∞)

  圖象關(guān)于原點和y軸不對稱

  非奇非偶函數(shù)

  向y軸正負(fù)方向無限延伸

  函數(shù)的值域為R

  函數(shù)圖象都過定點(1,0)

  自左向右看,

  圖象逐漸上升

  自左向右看,

  圖象逐漸下降

  增函數(shù)

  減函數(shù)

  第一象限的圖象縱坐標(biāo)都大于0

  第一象限的圖象縱坐標(biāo)都大于0

  第二象限的圖象縱坐標(biāo)都小于0

  第二象限的圖象縱坐標(biāo)都小于0

  (三)冪函數(shù)

  1、冪函數(shù)定義:一般地,形如的函數(shù)稱為冪函數(shù),其中為常數(shù).

  2、冪函數(shù)性質(zhì)歸納.

  (1)所有的冪函數(shù)在(0,+∞)都有定義,并且圖象都過點(1,1);

  (2)時,冪函數(shù)的圖象通過原點,并且在區(qū)間上是增函數(shù).特別地,當(dāng)時,冪函數(shù)的圖象下凸;當(dāng)時,冪函數(shù)的圖象上凸;

  (3)時,冪函數(shù)的圖象在區(qū)間上是減函數(shù).在第一象限內(nèi),當(dāng)從右邊趨向原點時,圖象在軸右方無限地逼近軸正半軸,當(dāng)趨于時,圖象在軸上方無限地逼近軸正半軸.

  第三章函數(shù)的應(yīng)用

  一、方程的根與函數(shù)的零點

  1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。

  2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標(biāo)。即:

  方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點.

  3、函數(shù)零點的求法:

  求函數(shù)的零點:

  1(代數(shù)法)求方程的實數(shù)根;

  2(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.

  4、二次函數(shù)的零點:

  二次函數(shù).

  1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點.

  2)△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點.

  3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點.

[標(biāo)簽:高考資訊 數(shù)學(xué)指導(dǎo)]

分享:

高考院校庫(挑大學(xué)·選專業(yè),一步到位!)

高考院校庫(挑大學(xué)·選專業(yè),一步到位!)

高校分?jǐn)?shù)線

專業(yè)分?jǐn)?shù)線

日期查詢
  • 歡迎掃描二維碼
    關(guān)注高考網(wǎng)微信
    ID:gaokao_com

  • 👇掃描免費領(lǐng)
    近十年高考真題匯總
    備考、選科和專業(yè)解讀
    關(guān)注高考網(wǎng)官方服務(wù)號