高中數(shù)學必修一函數(shù)基本特征知識點總結
2018-12-31 19:03:07三好網(wǎng)
1、函數(shù)的局部性質——單調(diào)性
設函數(shù)y=f(x)的定義域為I,如果對應定義域I內(nèi)的某個區(qū)間D內(nèi)的任意兩個變量x1、x2,當x1< x2時,都有f(x1)<f(x2),那么y=f(x)在區(qū)間D上是增函數(shù),D是函數(shù)y=f(x)的單調(diào)遞增區(qū)間;當x1< x2時,都有f(x1)>f(x2),那么那么y=f(x)在區(qū)間D上是減函數(shù),D是函數(shù)y=f(x)的單調(diào)遞減區(qū)間。
、藕瘮(shù)區(qū)間單調(diào)性的判斷思路
、≡诮o出區(qū)間內(nèi)任取x1、x2,則x1、x2∈D,且x1< x2。
、 做差值f(x1)-f(x2),并進行變形和配方,變?yōu)橐子谂袛嗾摰男问健?/span>
ⅲ判斷變形后的表達式f(x1)-f(x2)的符號,指出單調(diào)性。
、茝秃虾瘮(shù)的單調(diào)性
復合函數(shù)y=f[g(x)]的單調(diào)性與構成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關,其規(guī)律為“同增異減”;多個函數(shù)的復合函數(shù),根據(jù)原則“減偶則增,減奇則減”。
⑶注意事項
函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間,不能把單調(diào)性相同的區(qū)間和在一起寫成并集,如果函數(shù)在區(qū)間A和B上都遞增,則表示為f(x)的單調(diào)遞增區(qū)間為A和B,不能表示為A∪B。
2、函數(shù)的整體性質——奇偶性
對于函數(shù)f(x)定義域內(nèi)的任意一個x,都有f(x) =f(-x),則f(x)就為偶函數(shù);
對于函數(shù)f(x)定義域內(nèi)的任意一個x,都有f(x) =-f(x),則f(x)就為奇函數(shù)。
、牌婧瘮(shù)和偶函數(shù)的性質
、o論函數(shù)是奇函數(shù)還是偶函數(shù),只要函數(shù)具有奇偶性,該函數(shù)的定義域一定關于原點對稱。
ⅱ奇函數(shù)的圖像關于原點對稱,偶函數(shù)的圖像關于y軸對稱。
⑵函數(shù)奇偶性判斷思路
、∠却_定函數(shù)的定義域是否關于原點對稱,若不關于原點對稱,則為非奇非偶函數(shù)。
、⒋_定f(x) 和f(-x)的關系:
若f(x) -f(-x)=0,或f(x) /f(-x)=1,則函數(shù)為偶函數(shù);
若f(x)+f(-x)=0,或f(x)/ f(-x)=-1,則函數(shù)為奇函數(shù)。
3、函數(shù)的最值問題
⑴對于二次函數(shù),利用配方法,將函數(shù)化為y=(x-a)2+b的形式,得出函數(shù)的最大值或最小值。
、茖τ谝子诋嫵龊瘮(shù)圖像的函數(shù),畫出圖像,從圖像中觀察最值。
、顷P于二次函數(shù)在閉區(qū)間的最值問題
ⅰ判斷二次函數(shù)的頂點是否在所求區(qū)間內(nèi),若在區(qū)間內(nèi),則接ⅱ,若不在區(qū)間內(nèi),則接ⅲ。
ⅱ 若二次函數(shù)的頂點在所求區(qū)間內(nèi),則在二次函數(shù)y=ax2+bx+c中,a>0時,頂點為最小值,a<0時頂點為最大值;后判斷區(qū)間的兩端點距離頂點的遠近,離頂點遠的端點的函數(shù)值,即為a>0時的最大值或a<0時的最小值。
、 若二次函數(shù)的頂點不在所求區(qū)間內(nèi),則判斷函數(shù)在該區(qū)間的單調(diào)性
若函數(shù)在[a,b]上遞增,則最小值為f(a),最大值為f(b);
若函數(shù)在[a,b]上遞減,則最小值為f(b),最大值為f(a)。
注意:⑴由函數(shù)的單調(diào)性可以看出,在閉區(qū)間[a,b]上,指數(shù)函數(shù)的最值為:
a>1時,最小值f(a),最大值f(b);0<a<1時,最小值f(b),最大值f(a)。
、 對于任意指數(shù)函數(shù)y=ax (a>0且a≠1),都有f(1)=a。
3、冪函數(shù):函數(shù)y=xa(a∈R),高中階段,冪函數(shù)只研究第I象限的情況。
⑴所有冪函數(shù)都在(0,+∞)區(qū)間內(nèi)有定義,而且過定點(1,1)。
、芶>0時,冪函數(shù)圖像過原點,且在(0,+∞)區(qū)間為增函數(shù),a越大,圖像坡度越大。
、莂<0時,冪函數(shù)在(0,+∞)區(qū)間為減函數(shù)。
當x從右側無限接近原點時,圖像無限接近y軸正半軸;
當y無限接近正無窮時,圖像無限接近x軸正半軸。
冪函數(shù)總圖見下頁。
4、反函數(shù):將原函數(shù)y=f(x)的x和y互換即得其反函數(shù)x=f-1(y)。
反函數(shù)圖像與原函數(shù)圖像關于直線y=x對稱。