高一數(shù)學(xué)教案:《古典概型》教學(xué)設(shè)計(二)(2)
來源:網(wǎng)絡(luò)整理 2018-11-25 21:20:14
四.教學(xué)條件支持
為了有效實現(xiàn)教學(xué)目標,條件許可,可以借助計算機進行輔助教學(xué)。進行例3教學(xué)時,通過模擬和分析兩種方式中每個基本事件的等可能性,引導(dǎo)學(xué)生發(fā)現(xiàn)在第二種情況下每個基本事件不是等可能的。
五.教學(xué)過程設(shè)計
。ㄒ唬﹦(chuàng)設(shè)情境,引出課題
問題1:考察兩個試驗:(1)拋擲一枚質(zhì)地均勻的硬幣的試驗;(2)擲一顆質(zhì)地均勻的骰子的試驗。在這兩個試驗中,可能的結(jié)果分別有哪些?
設(shè)計意圖:通過擲硬幣與擲骰子兩個接近于生活的試驗的設(shè)計。先激發(fā)學(xué)生的學(xué)習興趣,然后引導(dǎo)學(xué)生觀察試驗,分析結(jié)果,找出共性。
師生活動:學(xué)生思考、討論,教師利用試驗給出所有可能出現(xiàn)的結(jié)果即基本事件。
問題2:基本事件有什么特點?
師生活動:教師加以引導(dǎo)與啟發(fā),利用基本事件的關(guān)系發(fā)現(xiàn)基本事件的特點。學(xué)生歸納與總結(jié),鼓勵學(xué)生用自己的語言表述,從而提高學(xué)生的表達能力與數(shù)學(xué)語言的組織能力
問題3:在擲骰子試驗中,隨機試驗“出現(xiàn)偶數(shù)點”可以由哪些基本事件組成?
設(shè)計意圖:通過舉例,進一步加深對基本事件的理解,從而為引出古典概型的定義做好鋪墊。
問題4:例1.從字母a,b,c,d中任意取出兩個不同字母的實驗中,有那些基本事件?
設(shè)計意圖:為了引出古典概型的概念,設(shè)計了例1。將數(shù)形結(jié)合和分類討論的思想滲透到具體問題中來。由于沒有學(xué)習排列組合,因此用列舉法列舉基本事件的個數(shù),不僅能讓學(xué)生直觀的感受到對象的總數(shù),而且還能使學(xué)生在列舉的時候作到不重不漏。解決了求古典概型中基本事件總數(shù)這一難點。
師生活動:教師引導(dǎo)學(xué)生列舉時做到不重復(fù)、不遺漏。學(xué)生列舉出基本事件。教師指出畫樹狀圖是列舉法的基本方法
。ǘ┩ㄟ^設(shè)疑,引出概念
問題1:你知道擲均勻硬幣出現(xiàn)正面朝上的概率是多少?擲骰子出現(xiàn)偶數(shù)點的概率是多少?例1中出現(xiàn)字母“d”的概率又是多少?
設(shè)計意圖:學(xué)生根據(jù)已有的知識,已經(jīng)可以獨立得出概率,通過教師的步步追問,引導(dǎo)學(xué)生深層次的考慮問題,看到問題的本質(zhì),得出概率公式。讓學(xué)生帶著思考問題觀察試驗,使其有目的的去尋找答案,有效的利用課堂時間,達到教學(xué)目標。公式的推導(dǎo)是在老師的啟發(fā)引導(dǎo)下,讓學(xué)生帶著好奇心去觀察數(shù)學(xué)模型。
師生活動:學(xué)生較容易得出上述問題的概率。
教師追問:這些概率你是怎么得出的?
學(xué)生:(1)從實驗來的;(2)從可能性角度分析得到的。
對于擲骰子試驗,出現(xiàn)各個點的可能性相同,
記出現(xiàn)1點,2點,…,6點的事件分別為A1,A2,…,A6 ,記“出現(xiàn)偶數(shù)點”為B,則P(A1)=P(A2)=…=P(A6),
又P(A1)+P(A2)+…=P(A6)=P(必然事件)=1
所以:P(A1)=P(A2)=…=P(A6)=
教師追問:出現(xiàn)偶數(shù)點的概率為什么是?
師生:記“出現(xiàn)偶數(shù)點”為事件B,利用概率的加法公式有
。校ǎ拢剑校ǎ粒玻校ǎ粒矗校ǎ粒叮剑
推導(dǎo)出概率公式:
問題2:上述概率公式的推導(dǎo)過程中基本事件有什么特點?
設(shè)計意圖:培養(yǎng)運用從具體到抽象、從特殊到一般的辯證唯物主義觀點分析問題的能力,充分體現(xiàn)了數(shù)學(xué)的化歸思想。啟發(fā)誘導(dǎo)的同時,訓(xùn)練了學(xué)生觀察和概括歸納的能力。通過問題的解決引出古典概型的概念。
師生活動:教師引導(dǎo)學(xué)生找出共性。具有下列兩個特點的概率模型才能運用上述公式,我們稱為古典概率模型,簡稱古典概型。
(1)試驗中所有可能出現(xiàn)的基本事件只有有限個;(有限性)
。2)每個基本事件出現(xiàn)的可能性相等。(等可能性)
問題3:(1)向一個圓面內(nèi)隨機地投射一個點,如果該點落在圓內(nèi)任意一點都是等可能的,你認為這是古典概型嗎?為什么?
。ǎ玻┠惩瑢W(xué)隨機地向一靶心進行射擊,這一試驗的結(jié)果只有有限個:命中10環(huán)、命中9環(huán)……命中5環(huán)和不中環(huán)。你認為這是古典概型嗎?為什么?
相關(guān)推薦
- 高一數(shù)學(xué)教案:《古典概型》教學(xué)設(shè)計(
- 高一數(shù)學(xué)教案:《隨機抽樣》教學(xué)設(shè)計
- 高一數(shù)學(xué)教案:《直線的兩點式方程》教
- 高一數(shù)學(xué)教案:《兩條直線的平行與垂直
- 高一數(shù)學(xué)教案:《直線與平面垂直的判定
- 高一數(shù)學(xué)教案:《直線與平面垂直的判定
- 高一數(shù)學(xué)教案:《空間幾何體的直觀圖》
- 高一數(shù)學(xué)教案:《球的體積和表面積》教
- 高一數(shù)學(xué)教案:《直線的一般式方程》教
- 高一數(shù)學(xué)教案:《直線的點斜式方程》教
高考院校庫(挑大學(xué)·選專業(yè),一步到位!)
高校分數(shù)線
專業(yè)分數(shù)線
- 日期查詢