全國

熱門城市 | 全國 北京 上海 廣東

華北地區(qū) | 北京 天津 河北 山西 內蒙古

東北地區(qū) | 遼寧 吉林 黑龍江

華東地區(qū) | 上海 江蘇 浙江 安徽 福建 江西 山東

華中地區(qū) | 河南 湖北 湖南

西南地區(qū) | 重慶 四川 貴州 云南 西藏

西北地區(qū) | 陜西 甘肅 青海 寧夏 新疆

華南地區(qū) | 廣東 廣西 海南

  • 微 信
    高考

    關注高考網(wǎng)公眾號

    (www_gaokao_com)
    了解更多高考資訊

首頁 > 高中頻道 > 高二數(shù)學復習方法 > 高中數(shù)學解析幾何中求參數(shù)取值范圍的方法(2)

高中數(shù)學解析幾何中求參數(shù)取值范圍的方法(2)

2011-09-13 18:24:31學習方法網(wǎng)

  二、利用判別式構造不等式

  在解析幾何中,直線與曲線之間的位置關系,可以轉化為一元二次方程的解的問題,因此可利用判別式來構造不等式求解.

  例4設拋物線y2 = 8x的準線與x軸交于點Q,若過點Q的直線L與拋物線有公共點,則直線L的斜率取值范圍是 ( )

  A [-12 ,12 ] B [-2,2] C [-1,1] D [-4,4]

  分析:由于直線l與拋物線有公共點,等價于一元二次方程有解,則判別式△≥0

  解:依題意知Q坐標為(-2,0) , 則直線L的方程為y = k(x+2)

  由 得 k2x2+(4k2-8)x+4k2 = 0

  ∵直線L與拋物線有公共點

  ∴△≥0 即k2≤1 解得-1≤k≤1 故選 (C)

  例5 直線L: y = kx+1與雙曲線C: 2x2-y2 = 1的右支交于不同的兩點A、B,求實數(shù)k的取值范圍.

  分析:利用直線方程和雙曲線方程得到x的一元二次方程,由于直線與右支交于不同兩點,則△>0,同時,還需考慮右支上點的橫坐標的取值范圍來建立關于k的不等式.

  解:由 得 (k2-2)x2 +2kx+2 = 0

  ∵直線與雙曲線的右支交于不同兩點,則

  解得 -2<-2< p>

  三、利用點與圓錐曲線的位置關系構造不等式

  曲線把坐標平面分成三個區(qū)域,若點P(x0,y0)與曲線方程f(x,y)=0關系:若P在曲線上,則f(x0,y0)=0;若P在曲線內,則f(x0,y0)<0;若P在曲線外,則f(x0,y0)>0;可見,平面內曲線與點均滿足一定的關系。故可用這些關系來構造不等式解題.

  例6已知橢圓2x2 + y2 = a2 (a>0)與連結兩點A(1,2)、B(2,3)的線段沒有公共點,求實數(shù)a的取值范圍.

  分析:結合點A,B及橢圓位置,可得當AB兩點同時在橢圓內或同時在橢圓外時符合條件.

  解:依題意可知,當A、B同時在橢圓內或橢圓外時滿足條件。

  當A、B同時在橢圓內,則

  解得a >17

  當A、B同時在橢圓外,則

  解得0<6< p>

  綜上所述,解得0<6 或a>17

  例7若拋物線y2=4mx (m≠0)的焦點在圓(x-2m)2+(y-1)2=4的內部,求實數(shù)m的取值范圍.

  分析:由于焦點(m,0)在圓內部,則把(m,0)代入可得.

  解:∵拋物線的焦點F(m,0)在圓的內部,

  ∴(m-2m)2+(0-1)2<4 即m2<3

  又∵m≠0

  ∴-3 <0或0<3< p>

[標簽:數(shù)學]

分享:

高考院校庫(挑大學·選專業(yè),一步到位!)

高考院校庫(挑大學·選專業(yè),一步到位!)

高校分數(shù)線

專業(yè)分數(shù)線

  • 歡迎掃描二維碼
    關注高考網(wǎng)微信
    ID:gaokao_com

  • 👇掃描免費領
    近十年高考真題匯總
    備考、選科和專業(yè)解讀
    關注高考網(wǎng)官方服務號