高一數(shù)學(xué)學(xué)習(xí)方法:三角函數(shù)常見問題十種求解策略
2019-04-12 15:20:59網(wǎng)絡(luò)資源
一、見“給角求值”問題,運(yùn)用“新興”誘導(dǎo)公式
一步到位轉(zhuǎn)換到區(qū)間(-90o,90o)的公式.
1.sin(kπ+α)=(-1)ksinα(k∈Z);2.cos(kπ+α)=(-1)kcosα(k∈Z);
3.tan(kπ+α)=(-1)ktanα(k∈Z);4.cot(kπ+α)=(-1)kcotα(k∈Z).
二、見“sinα±cosα”問題,運(yùn)用三角“八卦圖”
1.sinα+cosα>0(或<0)óα的終邊在直線y+x=0的上方(或下方);
2.sinα-cosα>0(或<0)óα的終邊在直線y-x=0的上方(或下方);
3.|sinα|>|cosα|óα的終邊在Ⅱ、Ⅲ的區(qū)域內(nèi);
4.|sinα|<|cosα|óα的終邊在Ⅰ、Ⅳ區(qū)域內(nèi).
三、見“知1求5”問題,造Rt△,用勾股定理,熟記常用勾股數(shù)(3,4,5),(5,12,13),(7,24,25),仍然注意“符號看象限”。
四、“見齊思弦”=>“化弦為一”
已知tanα,求sinα與cosα的齊次式,有些整式情形還可以視其分母為1,轉(zhuǎn)化為sin2α+cos2α.
五、見“正弦值或角的平方差”形式,啟用“平方差”公式:
1.sin(α+β)sin(α-β)=sin2α-sin2β;2.cos(α+β)cos(α-β)=cos2α-sin2β.