高考數(shù)學(xué)大題答題技巧
2019-04-08 19:42:28本站原創(chuàng)
高考數(shù)學(xué)大題答題技巧
一、三角函數(shù)題
注意歸一公式、誘導(dǎo)公式的正確性(轉(zhuǎn)化成同名同角三角函數(shù)時(shí),套用歸一公式、誘導(dǎo)公式(奇變、偶不變;符號(hào)看象限)時(shí),很容易因?yàn)榇中,?dǎo)致錯(cuò)誤!一著不慎,滿(mǎn)盤(pán)皆輸!)。
二、數(shù)列題
1、證明一個(gè)數(shù)列是等差(等比)數(shù)列時(shí),最后下結(jié)論時(shí)要寫(xiě)上以誰(shuí)為首項(xiàng),誰(shuí)為公差(公比)的等差(等比)數(shù)列; 2、最后一問(wèn)證明不等式成立時(shí),如果一端是常數(shù),另一端是含有n的式子時(shí),一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時(shí),當(dāng)n=k+1時(shí),一定利用上n=k時(shí)的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進(jìn)行適當(dāng)?shù)姆趴s,這一點(diǎn)是有難度的。簡(jiǎn)潔的方法是,用當(dāng)前的式子減去目標(biāo)式子,看符號(hào),得到目標(biāo)式子,下結(jié)論時(shí)一定寫(xiě)上綜上:由①②得證; 3、證明不等式時(shí),有時(shí)構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡(jiǎn)單(所以要有構(gòu)造函數(shù)的意識(shí))。
三、立體幾何題
1、證明線(xiàn)面位置關(guān)系,一般不需要去建系,更簡(jiǎn)單;
2、求異面直線(xiàn)所成的角、線(xiàn)面角、二面角、存在性問(wèn)題、幾何體的高、表面積、體積等問(wèn)題時(shí),最好要建系;
3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系(符號(hào)問(wèn)題、鈍角、銳角問(wèn)題)。
四、概率問(wèn)題
1、搞清隨機(jī)試驗(yàn)包含的所有基本事件和所求事件包含的基本事件的個(gè)數(shù);
2、搞清是什么概率模型,套用哪個(gè)公式;
3、記準(zhǔn)均值、方差、標(biāo)準(zhǔn)差公式;
4、求概率時(shí),正難則反(根據(jù)p1+p2+...+pn=1);
5、注意計(jì)數(shù)時(shí)利用列舉、樹(shù)圖等基本方法;
6、注意放回抽樣,不放回抽樣;
7、注意“零散的”的知識(shí)點(diǎn)(莖葉圖,頻率分布直方圖、分層抽樣等)在大題中的滲透;
8、注意條件概率公式;
9、注意平均分組、不完全平均分組問(wèn)題。
五、圓錐曲線(xiàn)問(wèn)題
1、注意求軌跡方程時(shí),從三種曲線(xiàn)(橢圓、雙曲線(xiàn)、拋物線(xiàn))著想,橢圓考得最多,方法上有直接法、定義法、交軌法、參數(shù)法、待定系數(shù)法;
2、注意直線(xiàn)的設(shè)法(法1分有斜率,沒(méi)斜率;法2設(shè)x=my+b(斜率不為零時(shí)),知道弦中點(diǎn)時(shí),往往用點(diǎn)差法);注意判別式;注意韋達(dá)定理;注意弦長(zhǎng)公式;注意自變量的取值范圍等等;
3、戰(zhàn)術(shù)上整體思路要保7分,爭(zhēng)9分,想12分。
六、導(dǎo)數(shù)、極值、最值、不等式恒成立(或逆用求參)問(wèn)題
1、先求函數(shù)的定義域,正確求出導(dǎo)數(shù),特別是復(fù)合函數(shù)的導(dǎo)數(shù),單調(diào)區(qū)間一般不能并,用“和”或“,”隔開(kāi)(知函數(shù)求單調(diào)區(qū)間,不帶等號(hào);知單調(diào)性,求參數(shù)范圍,帶等號(hào));
2、注意最后一問(wèn)有應(yīng)用前面結(jié)論的意識(shí);
3、注意分論討論的思想;
4、不等式問(wèn)題有構(gòu)造函數(shù)的意識(shí);
5、恒成立問(wèn)題(分離常數(shù)法、利用函數(shù)圖像與根的分布法、求函數(shù)最值法);
6、整體思路上保6分,爭(zhēng)10分,想14分。
高考數(shù)學(xué)大題答題思路
1、函數(shù)與方程思想
函數(shù)思想是指運(yùn)用運(yùn)動(dòng)變化的觀(guān)點(diǎn),分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,通過(guò)建立函數(shù)關(guān)系運(yùn)用函數(shù)的圖像和性質(zhì)去分析問(wèn)題、轉(zhuǎn)化問(wèn)題和解決問(wèn)題;方程思想,是從問(wèn)題的數(shù)量關(guān)系入手,運(yùn)用數(shù)學(xué)語(yǔ)言將問(wèn)題轉(zhuǎn)化為方程或不等式模型去解決問(wèn)題。同學(xué)們?cè)诮忸}時(shí)可利用轉(zhuǎn)化思想進(jìn)行函數(shù)與方程間的相互轉(zhuǎn)化。 2、 數(shù)形結(jié)合思想
中學(xué)數(shù)學(xué)研究的對(duì)象可分為兩大部分,一部分是數(shù),一部分是形,但數(shù)與形是有聯(lián)系的,這個(gè)聯(lián)系稱(chēng)之為數(shù)形結(jié)合或形數(shù)結(jié)合。它既是尋找問(wèn)題解決切入點(diǎn)的“法寶”,又是優(yōu)化解題途徑的“良方”,因此建議同學(xué)們?cè)诮獯饠?shù)學(xué)題時(shí),能畫(huà)圖的盡量畫(huà)出圖形,以利于正確地理解題意、快速地解決問(wèn)題。 3、特殊與一般的思想
用這種思想解選擇題有時(shí)特別有效,這是因?yàn)橐粋(gè)命題在普遍意義上成立時(shí),在其特殊情況下也必然成立,根據(jù)這一點(diǎn),同學(xué)們可以直接確定選擇題中的正確選項(xiàng)。不僅如此,用這種思想方法去探求主觀(guān)題的求解策略,也同樣有用
4、極限思想解題步驟
極限思想解決問(wèn)題的一般步驟為:一、對(duì)于所求的未知量,先設(shè)法構(gòu)思一個(gè)與它有關(guān)的變量;二、確認(rèn)這變量通過(guò)無(wú)限過(guò)程的結(jié)果就是所求的未知量;三、構(gòu)造函數(shù)(數(shù)列)并利用極限計(jì)算法則得出結(jié)果或利用圖形的極限位置直接計(jì)算結(jié)果
5、分類(lèi)討論思想
同學(xué)們?cè)诮忸}時(shí)常常會(huì)遇到這樣一種情況,解到某一步之后,不能再以統(tǒng)一的方法、統(tǒng)一的式子繼續(xù)進(jìn)行下去,這是因?yàn)楸谎芯康膶?duì)象包含了多種情況,這就需要對(duì)各種情況加以分類(lèi),并逐類(lèi)求解,然后綜合歸納得解,這就是分類(lèi)討論。引起分類(lèi)討論的原因很多,數(shù)學(xué)概念本身具有多種情形,數(shù)學(xué)運(yùn)算法則、某些定理、公式的限制,圖形位置的不確定性,變化等均可能引起分類(lèi)討論。建議同學(xué)們?cè)诜诸?lèi)討論解題時(shí),要做到標(biāo)準(zhǔn)統(tǒng)一,不重不漏。
高考數(shù)學(xué)選擇題解題技巧
特值檢驗(yàn)法
對(duì)于具有一般性的數(shù)學(xué)問(wèn)題,我們?cè)诮忸}過(guò)程中,可以將問(wèn)題特殊化,利用問(wèn)題在某一特殊情況下不真,則它在一般情況下不真這一原理,達(dá)到去偽存真的目的。
極端性原則
將所要研究的問(wèn)題向極端狀態(tài)進(jìn)行分析,使因果關(guān)系變得更加明顯,從而達(dá)到迅速解決問(wèn)題的目的。極端性多數(shù)應(yīng)用在求極值、取值范圍、解析幾何上面,很多計(jì)算步驟繁瑣、計(jì)算量大的題,一但采用極端性去分析,那么就能瞬間解決問(wèn)題。
剔除法
利用已知條件和選擇支所提供的信息,從四個(gè)選項(xiàng)中剔除掉三個(gè)錯(cuò)誤的答案,從而達(dá)到正確選擇的目的。這是一種常用的方法,尤其是答案為定值,或者有數(shù)值范圍時(shí),取特殊點(diǎn)代入驗(yàn)證即可排除。
數(shù)形結(jié)合法
由題目條件,作出符合題意的圖形或圖象,借助圖形或圖象的直觀(guān)性,經(jīng)過(guò)簡(jiǎn)單的推理或計(jì)算,從而得出答案的方法。數(shù)形結(jié)合的好處就是直觀(guān),甚至可以用量角尺直接量出結(jié)果來(lái)。