全國

熱門城市 | 全國 北京 上海 廣東

華北地區(qū) | 北京 天津 河北 山西 內(nèi)蒙古

東北地區(qū) | 遼寧 吉林 黑龍江

華東地區(qū) | 上海 江蘇 浙江 安徽 福建 江西 山東

華中地區(qū) | 河南 湖北 湖南

西南地區(qū) | 重慶 四川 貴州 云南 西藏

西北地區(qū) | 陜西 甘肅 青海 寧夏 新疆

華南地區(qū) | 廣東 廣西 海南

  • 微 信
    高考

    關(guān)注高考網(wǎng)公眾號

    (www_gaokao_com)
    了解更多高考資訊

首頁 > 高考總復(fù)習(xí) > 高考數(shù)學(xué)復(fù)習(xí)方法 > 高考數(shù)學(xué)填空題的4大解題技巧

高考數(shù)學(xué)填空題的4大解題技巧

2018-10-22 13:34:45學(xué)科網(wǎng)

  填空題的類型一般可分為:多選填空題、條件與結(jié)論開放的填空題。這說明了填空題是數(shù)學(xué)命題重要的組成部分,它約占了整張?jiān)嚲淼娜种弧R虼,我們在備考時,既要關(guān)注這一新動向,又要做好應(yīng)試的技能準(zhǔn)備。解題時,要有合理的分析和判斷,要求推理、運(yùn)算的每一步驟都正確無誤,還要求將答案表達(dá)得準(zhǔn)確、完整。合情推理、優(yōu)化思路、少算多思將是快速、準(zhǔn)確地解答填空題的基本要求。

  解答填空題的基本策略是準(zhǔn)確、迅速、整潔。

  準(zhǔn)確是解答填空題的先決條件,填空題不設(shè)中間分,一步失誤,全題無分,所以應(yīng)仔細(xì)審題、深入分析、正確推演、謹(jǐn)防疏漏,確保準(zhǔn)確;

  迅速是贏得時間獲取高分的必要條件,對于填空題的答題時間,應(yīng)該控制在不超過20分鐘左右,速度越快越好,要避免"超時失分"現(xiàn)象的發(fā)生;

  整潔是保住得分的充分條件,只有把正確的答案整潔的書寫在答題紙上才能保證閱卷教師正確的批改,在網(wǎng)上閱卷時整潔顯得尤為重要。

  高考中的數(shù)學(xué)填空題一般是容易題或中檔題,數(shù)學(xué)填空題,絕大多數(shù)是計(jì)算型(尤其是推理計(jì)算型)和概念(性質(zhì))判斷型的試題,應(yīng)答時必須按規(guī)則進(jìn)行切實(shí)的計(jì)算或者合乎邏輯的推演和判斷。求解填空題的基本策略是要在"準(zhǔn)"、"巧"、"快"上下功夫。常用的方法有直接法、特殊化法、數(shù)行結(jié)合法、等價轉(zhuǎn)化法等。

  1 直接法

  這是解填空題的基本方法,它是直接從題設(shè)條件出發(fā)、利用定義、定理、性質(zhì)、公式等知識,通過變形、推理、運(yùn)算等過程,直接得到結(jié)果。它是解填空題的最基本、最常用的方法。使用直接法解填空題,要善于通過現(xiàn)象看本質(zhì),熟練應(yīng)用解方程和解不等式的方法,自覺地、有意識地采取靈活、簡捷的解法。

  2 特殊化法

  當(dāng)填空題的結(jié)論唯一或題設(shè)條件中提供的信息暗示答案是一個定值時,而已知條件中含有某些不確定的量,可以將題中變化的不定量選取一些符合條件的恰當(dāng)特殊值(或特殊函數(shù),或特殊角,圖形特殊位置,特殊點(diǎn),特殊方程,特殊模型等)進(jìn)行處理,從而得出探求的結(jié)論。這樣可大大地簡化推理、論證的過程。

  3 數(shù)形結(jié)合法

  "數(shù)缺形時少直觀,形缺數(shù)時難入微。"數(shù)學(xué)中大量數(shù)的問題后面都隱含著形的信息,圖形的特征上也體現(xiàn)著數(shù)的關(guān)系。我們要將抽象、復(fù)雜的數(shù)量關(guān)系,通過形的形象、直觀揭示出來,以達(dá)到"形幫數(shù)"的目的;同時我們又要運(yùn)用數(shù)的規(guī)律、數(shù)值的計(jì)算,來尋找處理形的方法,來達(dá)到"數(shù)促形"的目的。對于一些含有幾何背景的填空題,若能數(shù)中思形,以形助數(shù),則往往可以簡捷地解決問題,得出正確的結(jié)果。

  4 等價轉(zhuǎn)化法

  通過"化復(fù)雜為簡單、化陌生為熟悉",將問題等價地轉(zhuǎn)化成便于解決的問題,從而得出正確的結(jié)果。

  數(shù)學(xué)里常用的幾種經(jīng)典解題方法介紹:

  1、配方法

  所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項(xiàng)配成一個或幾個多項(xiàng)式正整數(shù)次冪的和形式。通過配方解決數(shù)學(xué)問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。

  2、因式分解法

  因式分解,就是把一個多項(xiàng)式化成幾個整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項(xiàng)添項(xiàng)、求根分解、換元、待定系數(shù)等等。

  3、換元法

  換元法是數(shù)學(xué)中一個非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復(fù)雜的數(shù)學(xué)式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。

  4、判別式法與韋達(dá)定理

  一元二次方程ax2+bx+c=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運(yùn)算中都有非常廣泛的應(yīng)用。

  韋達(dá)定理除了已知一元二次方程的一個根,求另一根;已知兩個數(shù)的和與積,求這兩個數(shù)等簡單應(yīng)用外,還可以求根的對稱函數(shù),計(jì)論二次方程根的符號,解對稱方程組,以及解一些有關(guān)二次曲線的問題等,都有非常廣泛的應(yīng)用。

  5、待定系數(shù)法

  在解數(shù)學(xué)問題時,若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問題,這種解題方法稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。

  6、構(gòu)造法

  在解題時,我們常常會采用這樣的方法,通過對條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數(shù)、一個等價命題等,架起一座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。運(yùn)用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識互相滲透,有利于問題的解決。

[標(biāo)簽:高考備考 復(fù)習(xí)方法]

分享:

高考院校庫(挑大學(xué)·選專業(yè),一步到位!)

高考院校庫(挑大學(xué)·選專業(yè),一步到位。

高校分?jǐn)?shù)線

專業(yè)分?jǐn)?shù)線

日期查詢
  • 歡迎掃描二維碼
    關(guān)注高考網(wǎng)微信
    ID:gaokao_com

  • 👇掃描免費(fèi)領(lǐng)
    近十年高考真題匯總
    備考、選科和專業(yè)解讀
    關(guān)注高考網(wǎng)官方服務(wù)號